Abstract

To address the issues of sedimentation of the working medium,high sealing requirements, and rapid increase in stiffness under medium- and high-frequency excitation leading to severe energy dissipation in traditional magnetorheological dampers, a magnetorheological composite material with good sedimentation stability and low sealing requirements was prepared and tested. An improved Herschel–Bulkley model was established to characterize the mechanical properties of the composite material. Furthermore, a shear magnetorheological damper was designed and manufactured based on the composite material, and the performance response law of the damper under medium- and high-frequency excitation was tested by designed experiments. The results show that the dynamic stiffness of the damper increases from 4.83 × 105N/m to 6.32 × 105 N/m when the test frequency is increased from 5 Hz to 20 Hz under the current excitation of 3A, and the single-cycle energy consumption of the damper under the full-band is about 0.037J, which verified the energy consumption capacity of the designed magnetorheological damper under medium- and high-frequency vibrations.

References

1.
Zhou
,
T. M.
,
Chen
,
E. W.
,
Lu
,
Y. M.
,
Liu
,
Z. S.
, &
Chen
,
W. W.
,
2014
, “
Modified Polynomial Model and Its Verification for a MR Damper
,”
J. Vib. Shock
,
33
(
7
), pp.
221
226
.
2.
Jiang
K.
,
Zhang
,
T.
,
Feng
,
Z. X.
, and
Zhang
,
M.
,
2016
, “
A Semi-Active control Strategy of MR Damper Suspension
,”
J. Chongqing Jiaotong Univ. (Nat. Sci.)
,
35
(
6
), pp.
153
157
.
3.
Gao
,
X.
,
Niu
,
J.
,
Liu
Z.
, and
Tian
,
L.
,
2020
, “
Electrical Parameters Influence Characteristics and Vibration Isolation Performance of Self Powered MR Damper
,”
Automot. Eng.
,
42
(
1
), pp.
88
93
.
4.
Gordaninejad
,
F.
,
Wang
,
X.
,
Hitchcock
,
G.
,
Bangrakulur
,
K.
,
Ruan
,
S.
, and
Siino
,
M
,
2010
, “
Modular High-Force Seismic Magneto-Rheological Fluid Damper
,”
J. Struct. Eng.
,
136
(
2
), pp.
135
143
.
5.
Wang
,
D.
,
Wang
,
Y. K.
,
Zi
,
B.
,
Cao
,
Z.
and
Ding
,
H.
,
2020
, “
Development of an Active and Passive Finger Rehabilitation Robot Using Pneumatic Muscle and Magnetorheological Damper
,”
Mech. Mach. Theory
,
147
, p.
103762
.
6.
Lee
,
D. Y.
,
Nam
,
Y. J.
,
Yamane
,
R.
, and
Park
,
M. K.
,
2009
, “
Performance Evaluation on Vibration Control of MR Landing Gear
,”
J. Phys. Conf. Ser.
,
149
(
1
), pp.
012068.1
012068.6
.
7.
Hiemenz
,
G. J.
,
Choi
,
Y. T.
, and
Wereley
,
N. M.
,
2007
, “
Semiactive Control of Vertical Stroking Helicopter Crew Seat for Enhanced Crashworthiness
,”
J. Aircr.
,
44
(
3
), pp.
1031
1034
.
8.
Shi
,
W.
,
Zhang
,
S.
,
Chen
,
Z.
, and
Zhang
,
Y.
,
2023
, “
Modeling and Vibration Analysis of Semi-Active Seat Suspension with Magnetorheological Damper
,”
J. Southwest Jiaotong Univ.
,
58
(
2
), pp.
253
260
.
9.
Hou
,
B.
,
2006
, “
Design and Analysis of a Gun Recoil Magneto-Rheological Damper
,”
Acta Armamentarii
,
27
(
4
), pp.
613
616
.
10.
Jiao
,
X. L.
,
Ma
,
W. L.
,
Li
,
S. L.
, and
Zhao
,
Y.
,
2017
, “
Analytical Model of Micro-Vibration Fluid Damper Under Medium and High Frequency Excitation
,”
Sci. Sin. (Technol.)
,
47
(
12
), pp.
1273
1285
.
11.
Zuo
,
S.
,
Mao
,
Y.
,
Wu
,
X.
,
Jiang
,
W-Q.
, and
Wei
,
X.-J.
,
2016
, “
Modelling and Optimization of High Frequency Hardening Characteristics of Magneto Rheological Damper
,”
J. Vib. Shock
,
35
(
10
), pp.
120
125
, 150.
12.
Tu
,
F.
,
Chen
,
Z. B.
,
Li
,
H.
,
Jiao
,
Y.-H.
,
Fang
,
B.
, and
Huang
,
W.-H.
,
2007
, “
Research on Improved Magnetorheological Damper for Wide-Band Vibration Control
,”
J. Vib. Eng.
,
20
(
5
), pp.
484
488
.
13.
Cui
,
S.
,
Wang
,
Y.
,
Zhou
,
Y.
,
Liu
,
C.
, and
Zhang
,
P.
.,
2023
, “
Preparation and Elastic-Adjustable Performance of Magnetorheological Elastomer Rail Pad for Fastening System
,”
J. Railw. Sci. Eng.
,
20
(
6
), pp.
1
10
.
14.
Ginder
,
J. M.
,
Nichols
,
M. E.
,
Elie
,
L. D.
, and
Tardiff
,
J. L
.,
1999
, “
Magnetorheological Elastomers: Properties and Applications
,”
Ford Motor Co. (United States)
,
15
(
3
), pp.
36
41
.
15.
Davis
,
L. C.
,
1999
, “
Model of Magnetorheological Elastomers
,”
J. Appl. Phys.
,
85
(
6
), pp.
22
27
.
16.
Salem
,
A. M. H.
,
Ali
,
A.
,
Ramli
,
R. B.
,
Muthalif
,
A. G. A.
, and
Julai
,
S.
,
2022
, “
Effect of Carbonyl Iron Particle Types on the Structure and Performance of Magnetorheological Elastomers: A Frequency and Strain Dependent Study
,”
Polymers
,
14
(
19
), pp.
11
16
.
17.
Chen
,
L.
,
Gong
,
X. -L.
,
Jiang
,
W.
, and
Zhang
P. -Q.
2006
, “
Influence of Plasticizer on the Magnetorheological Effect of Magnetorheological Elastomers
,”
J. Funct. Mater.
,
36
(
05
), pp.
703
705
.
18.
Chen
,
Y.
,
Huang
,
X.
, and
Zheng
,
W.
,
2022
, “
Design of Composite Bi-Directional Vibration Isolators Using Magnetorheological Elastomers
,”
Noise Vib. Control
,
42
(
05
), pp.
245
252
.
19.
Tian
,
Z.
, and
Liang
,
J.
,
2018
, “
Dynamic Stability Analysis of s Thin Rectangular Magnetorheological Elastic Plate
,”
J. Vib. Eng.
,
31
(
01
), pp.
125
131
.
20.
Xu
,
Y.
,
Li
,
H.
,
Guo
,
X.
,
Zhang
,
S. H.
,
Liangliang
,
X.
, and
Hu
,
S.
,
2022
, “
Research Progress on Novel Tube Forming Technology Based on Magnetorheological Elastomer
,”
Aeronaut. Manuf. Technol.
,
65
(
10
), pp.
14
22
.
21.
Bi
,
F.
,
Cao
,
R.
,
Xu
,
W.
, and
Ma
,
T.
,
2019
, “
Variable Stiffness and Damping Shock Absorber Design Based on MRE
,”
J. Vib. Shock
,
38
(
03
), pp.
192
198
.
22.
Jin
,
B.
,
Li
,
Z. Y.
, and
Zhou
,
W.
,
2019
, “
Optimal Analysis on Location and Quantity of Dampers Based on Improved Genetic Algorithm
,”
J. Hunan Univ. (Nat. Sci.)
,
46
(
11
), pp.
114
121
.
23.
Yao
,
J.
,
Jiang
,
H.
,
Tian
,
X.
, and
Yang
,
X.
,
2018
, “
Research Progress of Magnetorheological Fluids and Its Application in Military Field
,”
Ordnance Mater. Sci. Eng.
,
41
(
02
), pp.
103
108
.
24.
Luan
,
M. D.
,
Wu
,
J. Y.
, and
Li
,
Y. S.
,
2019
, “
Location Method for Forced Oscillation Source in Mechanical Parts Based on Frequency-Domain Characteristics of Transfer Function Matrix
,”
Autom. Electr. Power Syst.
,
43
(
17
), pp.
84
91
.
25.
Tsang
,
H. H.
,
Su
,
R. K. L.
, and
Chandler
,
A. M.
,
2006
, “
Simplified Inverse Dynamics Models for MR Fluid Dampers
,”
Eng. Struct.
,
28
(
3
), pp.
327
341
.
26.
Dong
,
X.
,
Wang
,
K.
, and
Li
,
P.
,
2023
, “
Design of Magnetorheological Damper Based on Magnetorheological Composite Materials
,”
J. Southwest Jiaotong Univ.
,
58
(
4
), pp.
896
902
.
27.
Zhou
,
Z.
,
2020
,
Design Theory and Test of Broadband Vibration-Isolated Magnetorheological Damper for Whole-Spacecraft
,
Chongqing University
,
Chongqing
.
You do not currently have access to this content.