Abstract

Angular misalignment is a common error in gear transmission systems, significantly altering the contact and dynamic behaviors of the gear system. Conventionally, the time-varying mesh stiffness (TVMS) of helical gear pairs with angular misalignment is estimated under the assumption of a uniform load distribution along a fixed contact line. However, this simplification neglects the variations in contact line length and load distribution due to angular misalignment, thereby compromising the accuracy of TVMS predictions. To address this limitation, we propose a novel dual-iterative model for TVMS calculation in helical gears, accounting for the angular misalignment-induced contact line variation. This model combines traditional iterative calculations for gear slices with an additional iterative loop for the misalignment-induced contact line changes. Furthermore, it considers both axial and tangential meshing stiffnesses. The proposed dual-iterative TVMS model is verified by using the finite element (FE) method. Moreover, a six degree-of-freedom (DOF) dynamic model for misaligned helical gears is established to investigate the effects of misalignments on the vibration characteristics of the gear pair. An experimental setup utilizing a back-to-back helical gear test rig with adjustable angular misalignment is constructed to validate the proposed model. The experimental results exhibit a close alignment with the simulation predictions. It is concluded that the proposed model is suitable for estimating the TVMS and dynamic analysis of helical gear pairs with angular misalignment errors.

References

1.
Liang
,
X. H.
,
Zuo
,
M. J.
, and
Feng
,
Z. P.
,
2018
, “
Dynamic Modeling of Gearbox Faults: A Review
,”
Mech. Syst. Signal Process
,
98
, pp.
852
876
.
2.
Ma
,
H.
,
Zeng
,
J.
,
Feng
,
R. J.
,
Pang
,
X.
,
Wang
,
Q.
, and
Wen
,
B.
,
2015
, “
Review on Dynamics of Cracked Gear Systems
,”
Eng. Fail. Anal.
,
55
, pp.
224
245
.
3.
Wang
,
L. M.
, and
Shao
,
Y. M.
,
2020
, “
Fault Feature Extraction of Rotating Machinery Using a Reweighted Complete Ensemble Empirical Mode Decomposition With Adaptive Noise and Demodulation Analysis
,”
Mech. Syst. Signal Process
,
138
, pp.
106545
.
4.
Zhang
,
J.
, and
Liu
,
X. Z.
,
2015
, “
Effects of Misalignment on Surface Wear of Spur Gears
,”
Pro. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
9
), pp.
1145
1158
.
5.
Zou
,
D. S.
,
Wang
,
L. M.
,
Ye
,
H.
,
Yu
,
W.
,
Pan
,
W.
,
Shao
,
Y.
, and
Chris
,
M.
,
2024
, “
Spur Gear Time-Varying Mesh Stiffness Considering Meshing Phase Difference Caused by Angle Misalignment Error
,”
Meccanica
,
59
(
3
), pp.
475
490
.
6.
Wang
,
Q. B.
,
Xu
,
K.
,
Huai
,
T. S.
,
Ma
,
H.
, and
Wang
,
K.
,
2021
, “
A Mesh Stiffness Method Using Slice Coupling for Spur Gear Pairs With Misalignment and Lead Crown Relief
,”
Appl. Math. Model.
,
90
, pp.
845
861
.
7.
Chen
,
K. K.
,
Ma
,
H.
,
Che
,
L. Y.
,
Li
,
Z.
, and
Wen
,
B.
,
2019
, “
Comparison of Meshing Characteristics of Helical Gears With Spalling Fault Using Analytical and Finite-Element Methods
,”
Mech. Syst. Signal Process
,
121
, pp.
279
298
.
8.
Tian
,
X.
,
2004
, “
Dynamic Simulation for System Response of Gearbox Including Localized Gear Faults
,”
MSc. thesis
,
Department of Mechanical Engineering
,
Edmonton, Alberta
.
9.
Feng
,
M. J.
,
Ma
,
H.
,
Li
,
Z. W.
,
Wang
,
Q.
, and
Wen
,
B.
,
2018
, “
An Improved Analytical Method for Calculating Time-Varying Mesh Stiffness of Helical Gears
,”
Meccanica
,
53
(
4–5
), pp.
1131
1145
.
10.
Jiang
,
H. J.
,
Shao
,
Y. M.
, and
Mechefske
,
C. K.
,
2014
, “
Dynamic Characteristics of Helical Gears Under Sliding Friction With Spalling Defect
,”
Eng. Fail. Anal.
,
39
, pp.
92
107
.
11.
Cooley
,
C. G.
,
Liu
,
C. G.
,
Dai
,
X.
, and
Parker
,
R. G.
,
2016
, “
Gear Tooth Mesh Stiffness: A Comparison of Calculation Approaches
,”
Mech. Mach. Theory
,
105
, pp.
540
553
.
12.
Liang
,
X. H.
,
Zhang
,
H. S.
,
Zuo
,
M. J.
, and
Qin
,
Y.
,
2018
, “
Three New Models for Evaluation of Standard Involute Spur Gear Mesh Stiffness
,”
Mech. Syst. Signal Process
,
101
, pp.
424
434
.
13.
Zhao
,
B. S.
,
Huangfu
,
Y. F.
,
Ma
,
H.
,
Zhao
,
Z.
, and
Wang
,
K.
,
2020
, “
The Influence of the Geometric Eccentricity on the Dynamic Behaviors of Helical Gear Systems
,”
Eng. Fail. Anal.
,
118
, pp.
104907
.
14.
Raghuwanshi
,
N. K.
, and
Parey
,
A.
,
2016
, “
Experimental Measurement of Gear Mesh Stiffness of Cracked Spur Gear by Strain Gauge Technique
,”
Measurement
,
86
, pp.
266
275
.
15.
Wan
,
Z. G.
,
Cao
,
H. R.
,
Zi
,
Y. Y.
,
He
,
W.
, and
Chen
,
Y.
,
2015
, “
Mesh Stiffness Calculation Using an Accumulated Integral Potential Energy Method and Dynamic Analysis of Helical Gears
,”
Mech. Mach. Theory
,
92
, pp.
447
463
.
16.
Ma
,
H.
,
Li
,
Z. W.
,
Feng
,
M. J.
,
Feng
,
R.
, and
Wen
,
B.
,
2016
, “
Time-Varying Mesh Stiffness Calculation of Spur Gears With Spalling Defect
,”
Eng. Fail. Anal.
,
66
, pp.
166
176
.
17.
Wang
,
Q. B.
,
Zhao
,
B.
,
Fu
,
Y.
,
Kong
,
X.
, and
Ma
,
H.
,
2018
, “
An Improved Time-Varying Mesh Stiffness Model for Helical Gear Pairs Considering Axial Mesh Force Component
,”
Mech. Syst. Signal Process
,
106
, pp.
413
429
.
18.
Ma
,
H.
,
Zeng
,
J.
,
Feng
,
R. J.
,
Pang
,
X.
, and
Wen
,
B.
,
2016
, “
An Improved Analytical Method for Mesh Stiffness Calculation of Spur Gears With Tip Relief
,”
Mech. Mach. Theory
,
98
, pp.
64
80
.
19.
Han
,
L.
,
Xu
,
L. X.
, and
Qi
,
H. J.
,
2017
, “
Influences of Friction and Mesh Misalignment on Time-Varying Mesh Stiffness of Helical Gears
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3121
3130
.
20.
Luo
,
W.
,
Qiao
,
B. J.
,
Shen
,
Z. X.
,
Yang
,
Z.
, and
Chen
,
X.
,
2020
, “
Time-Varying Mesh Stiffness Calculation of a Planetary Gear Set With the Spalling Defect Under Sliding Friction
,”
Meccanica
,
55
(
1
), pp.
245
260
.
21.
Shen
,
J.
,
Hu
,
N. Q.
,
Zhang
,
L.
, and
Luo
,
P.
,
2020
, “
Dynamic Analysis of Planetary Gear With Root Crack in Sun Gear Based on Improved Time-Varying Mesh Stiffness
,”
Appl. Sci.
,
10
(
23
), pp.
8379
.
22.
Wang
,
S. Y.
, and
Zhu
,
R.
,
2023
, “
Research on Dynamics and Failure Mechanism of Herringbone Planetary Gearbox in Wind Turbine Under Gear Surface Pitting
,”
Eng. Fail. Anal.
,
146
, pp.
107130
.
23.
Hu
,
Z. D.
, and
Mao
,
K.
,
2017
, “
An Investigation of Misalignment Effects on the Performance of Acetal Gears
,”
Tribol. Int.
,
116
, pp.
394
402
.
24.
He
,
Z. Y.
,
Tang
,
W. Y.
, and
Sun
,
S. Z.
,
2021
, “
A Model for Analysis of Time-Varying Mesh Stiffness of Helical Gears With Misalignment Errors
,”
Trans. Famena
,
45
(
2
), pp.
59
73
.
25.
Cao
,
Z.
,
Shao
,
Y. M.
,
Zuo
,
M. J.
, and
Liang
,
X. H.
,
2015
, “
Dynamic and Quasi-Static Modeling of Planetary Gear Set Considering Carrier Misalignment Error and Varying Line of Action Along Tooth Width
,”
Pro. Inst. Mech. Eng. Part C J. Eng. Sci.
,
229
(
8
), pp.
1348
1360
.
26.
Kumar
,
P.
,
Hirani
,
H.
, and
Agrawal
,
A. K.
,
2019
, “
Effect of Gear Misalignment on Contact Area: Theoretical and Experimental Studies
,”
Measurement
,
132
, pp.
359
368
.
27.
Saxena
,
A.
,
Parey
,
A.
, and
Chouksey
,
M.
,
2015
, “
Effect of Shaft Misalignment and Friction Force on Time Varying Mesh Stiffness of Spur Gear Pair
,”
Eng. Fail. Anal.
,
49
, pp.
79
91
.
28.
Li
,
S. T.
,
2007
, “
Effects of Machining Errors, Assembly Errors and Tooth Modifications on Loading Capacity, Load-Sharing Ratio and Transmission Error of a Pair of Spur Gears
,”
Mech. Mach. Theory
,
42
(
6
), pp.
698
726
.
29.
Li
,
S. T.
,
2015
, “
Effects of Misalignment Error, Tooth Modifications and Transmitted Torque on Tooth Engagements of a Pair of Spur Gears
,”
Mech. Mach. Theory
,
83
, pp.
125
136
.
30.
Wang
,
C.
,
2020
, “
Dynamic Model of a Helical Gear Pair Considering Tooth Surface Friction
,”
J. Vib. Control.
,
26
(
15–16
), pp.
1356
1366
.
31.
Liu
,
C.
,
Fang
,
Z. D.
,
Guo
,
F.
,
Xiang
,
L.
,
Guan
,
Y.
, and
Du
,
J.
,
2020
, “
Dynamic Analysis of a Helical Gear Reduction by Experimental and Numerical Methods
,”
Noise Control Eng. J.
,
68
(
1
), pp.
48
58
.
32.
Chang
,
L.
,
Cao
,
X.
,
He
,
Z.
, and
Liu
,
G.
,
2018
, “
Load-Related Dynamic Behaviors of a Helical Gear Pair With Tooth Flank Errors
,”
J. Mech. Sci. Technol.
,
32
(
4
), pp.
1473
1487
.
33.
Chen
,
Y.-C.
,
2020
, “
Time-Varying Dynamic Analysis of a Helical-Geared Rotor-Bearing System With Three-Dimensional Motion Due to Shaft Deformation
,”
Appl. Sci.
,
10
(
4
), pp.
1542
.
34.
Wang
,
Z. G.
, and
Chen
,
Y. C.
,
2020
, “
Design of a Helical Gear Set With Adequate Linear Tip-Relief Leading to Improved Static and Dynamic Characteristics
,”
Mech. Mach. Theory
,
147
, pp.
103742
.
35.
Bai
,
H.
,
Song
,
C. S.
,
Zhu
,
C. C.
,
Wang
,
Y.
, and
Ou
,
Z.
,
2020
, “
Dynamic Modeling and Analysis of Helical Gear-Shaft-Bearing Coupled System
,”
J. Theor. Appl. Mech.
,
58
(
3
), pp.
743
756
.
36.
Zou
,
D. S.
,
Wang
,
L. M.
,
Yang
,
L. T.
,
Yu
,
W.
, and
Xie
,
L.
,
2023
, “
Dynamic Characteristics of a Spur Gear Pair Under the Coupled Effects of Angular Misalignment Fault and Tooth Modification
,”
Int. J. Non-Linear Mech.
,
155
, p.
104453
.
You do not currently have access to this content.