Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article explores an innovative vibration suppression design, termed octuple-action (OA), for acoustic metamaterial plates, aimed at mitigating the propagation of acoustic waves. The design's goal is to create broad frequency stopbands, which can be configured by adjusting passive parameters governing the locally resonant subsystems of the OA absorber. The metamaterial plate is structured with a sequence of evenly spaced OA vibration absorbers that are attached to an isotropic plate. Each OA vibration absorber is composed of two separate spring-mass-damper subsystems, interlinked to each segment of the isotropic plate at eight uniformly distributed locations through elastic couplers. An analytical methodology is developed, utilizing finite element modeling (FEM) and Bloch's theorem, to elucidate the presence of stopbands, resulting in the formation of a single configurable and unified frequency stopband, or two broad stopbands. A comprehensive analysis and illustration of the proposed metamaterial plate's OA vibration absorber are presented. The OA vibration absorber effectively impedes the propagation of acoustic waves through the metamaterial plate by generating a set of eight internal forces. These forces act in a manner that counteracts any incoming wave with a frequency residing within the designated stopband ranges. Furthermore, by optimally manipulating the effective material properties of the OA, the internal forces can be tailored, enabling the creation of configurable and broad stopbands. To comprehensively examine the influence of the OA vibration absorber's subsystem parameters on the characteristics of the stopbands, a rigorous parametric investigation is undertaken. This investigation focuses on how variations in mass densities and stiffness coefficients impact the stopband locations and widths. The excellent agreement observed between the FEM simulation results and the dispersion curves across a wide range of prescribed configurations and patterns serves as robust validation for the efficacy of the proposed metamaterial design incorporating the OA vibration absorber.

References

1.
Yao
,
S.
,
Zhou
,
X.
, and
Hu
,
G.
,
2010
, “
Investigation of the Negative-Mass Behaviors Occurring Below a Cut-Off Frequency
,”
New J. Phys.
,
12
(
10
), p.
103025
.
2.
Hu
,
G.
,
Tang
,
L.
,
Xu
,
J.
,
Lan
,
C.
, and
Das
,
R.
,
2019
, “
Metamaterial With Local Resonators Coupled by Negative Stiffness Springs for Enhanced Vibration Suppression
,”
ASME J. Appl. Mech.
,
86
(
8
), p.
081009
.
3.
Zhang
,
X.
, and
Liu
,
Z.
,
2004
, “
Negative Refraction of Acoustic Waves in Two-Dimensional Phononic Crystals
,”
Appl. Phys. Lett.
,
85
(
2
), pp.
341
343
.
4.
Xu
,
J.
, and
Tang
,
J.
,
2017
, “
Tunable Prism Based on Piezoelectric Metamaterial for Acoustic Beam Steering
,”
Appl. Phys. Lett.
,
110
(
18
), p.
181902
.
5.
Findeisen
,
C.
,
Hohe
,
J.
,
Kadic
,
M.
, and
Gumbsch
,
P.
,
2017
, “
Characteristics of Mechanical Metamaterials Based on Buckling Elements
,”
J. Mech. Phys. Solids
,
102
(
100
), pp.
151
164
.
6.
Xia
,
Y.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2020
, “
Bistable Attachments for Wideband Nonlinear Vibration Attenuation in a Metamaterial Beam
,”
Nonlinear Dyn.
,
102
(
3
), pp.
1285
1296
.
7.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
,
2006
, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nat. Mater.
,
5
(
6
), pp.
452
456
.
8.
Liu
,
X. N.
,
Hu
,
G. K.
,
Huang
,
G. L.
, and
Sun
,
C. T.
,
2011
, “
An Elastic Metamaterial With Simultaneously Negative Mass Density and Bulk Modulus
,”
Appl. Phys. Lett.
,
98
(
25
), p.
251907
.
9.
Li
,
J.
, and
Chan
,
C. T.
,
2004
, “
Double-Negative Acoustic Metamaterial
,”
Phys. Rev. E
,
70
(
5
), p.
55602
.
10.
Ding
,
Y.
,
Liu
,
Z.
,
Qiu
,
C.
, and
Shi
,
J.
,
2007
, “
Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density
,”
Phys. Rev. Lett.
,
99
(
9
), p.
93904
.
11.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.
12.
Pope
,
S. A.
, and
Daley
,
S.
,
2010
, “
Viscoelastic Locally Resonant Double Negative Metamaterials With Controllable Effective Density and Elasticity
,”
Phys. Lett. A
,
374
(
41
), pp.
4250
4255
.
13.
Yao
,
S.
,
Zhou
,
X.
, and
Hu
,
G.
,
2008
, “
Experimental Study on Negative Effective Mass in a 1D Mass–Spring System
,”
New J. Phys.
,
10
(
4
), p.
43020
.
14.
Zhao
,
J.
,
Bonello
,
B.
, and
Boyko
,
O.
,
2016
, “
Focusing of the Lowest-Order Antisymmetric Lamb Mode Behind a Gradient-Index Acoustic Metalens With Local Resonators
,”
Phys. Rev. B
,
93
(
17
), p.
174306
.
15.
Ma
,
G.
, and
Sheng
,
P.
,
2016
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
.
16.
Wang
,
Z.
,
Zhang
,
Q.
,
Zhang
,
K.
, and
Hu
,
G.
,
2016
, “
Tunable Digital Metamaterial for Broadband Vibration Isolation at Low Frequency
,”
Adv. Mater.
,
28
(
44
), pp.
9857
9861
.
17.
Sun
,
H.
,
Du
,
X.
, and
Pai
,
P. F.
,
2010
, “
Theory of Metamaterial Beams for Broadband Vibration Absorption
,”
J. Intell. Mater. Syst. Struct.
,
21
(
11
), pp.
1085
1101
.
18.
Sheng
,
P.
,
Zhang
,
X. X.
,
Liu
,
Z.
, and
Chan
,
C. T.
,
2003
, “
Locally Resonant Sonic Materials
,”
Phys. B: Condens. Matter.
,
338
(
1
), pp.
201
205
.
19.
Althamer
,
S.
,
2023
, “
Metamaterial Beam With Dual-Action Absorbers for Tunable and Multi-Band Vibration Absorption
,”
J. Intell. Mater. Syst. Struct.
,
34
(
19
), pp.
2257
2267
.
20.
Chen
,
J. S.
,
Sharma
,
B.
, and
Sun
,
C. T.
,
2011
, “
Dynamic Behaviour of Sandwich Structure Containing Spring-Mass Resonators
,”
Compos. Struct.
,
93
(
8
), pp.
2120
2125
.
21.
Zhang
,
S.
,
Xia
,
C.
, and
Fang
,
N.
,
2011
, “
Broadband Acoustic Cloak for Ultrasound Waves
,”
Phys. Rev. Lett.
,
106
(
2
), p.
24301
.
22.
Althamer
,
S.
,
2023
, “
Wave Attenuation Investigation in a Metamaterial Beam Using a Quad-Action Vibration Absorber With Cascaded Resonators
,”
Mech. Based Des. Struct. Mach.
,
52
(
9
), pp.
6675
6697
.
23.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Longitudinal Wave Band Gaps in Metamaterial-Based Elastic Rods Containing Multi-Degree-of-Freedom Resonators
,”
New J. Phys.
,
14
(
3
), p.
33042
.
24.
Pai
,
P. F.
,
2010
, “
Metamaterial-Based Broadband Elastic Wave Absorber
,”
J. Intell. Mater. Syst. Struct.
,
21
(
5
), pp.
517
528
.
25.
Althamer
,
S.
,
2024
, “
Exploring Wave Propagation and Attenuation in a Metamaterial Bar Using Dual-Action Vibration Absorber With Multifrequency Resonators
,”
Mech. Based Des. Struct. Mach.
,
3
(
25
), pp.
1
25
.
26.
El-Borgi
,
S.
,
Fernandes
,
R.
,
Rajendran
,
P.
,
Yazbeck
,
R.
,
Boyd
,
J. G.
, and
Lagoudas
,
D. C.
,
2020
, “
Multiple Bandgap Formation in a Locally Resonant Linear Metamaterial Beam: Theory and Experiments
,”
J. Sound Vib.
,
488
(
1
), p.
115647
.
27.
Wang
,
T.
,
Sheng
,
M.-P.
, and
Qin
,
Q.-H.
,
2016
, “
Multi-Flexural Band Gaps in an Euler–Bernoulli Beam With Lateral Local Resonators
,”
Phys. Lett. A
,
380
(
4
), pp.
525
529
.
28.
Wang
,
G.
,
Wen
,
J.
, and
Wen
,
X.
,
2005
, “
Quasi-One-Dimensional Phononic Crystals Studied Using the Improved Lumped-Mass Method: Application to Locally Resonant Beams With Flexural Wave Band Gap
,”
Phys. Rev. B
,
71
(
10
), p.
104302
.
29.
Chen
,
H.
,
Li
,
X. P.
,
Chen
,
Y. Y.
, and
Huang
,
G. L.
,
2017
, “
Wave Propagation and Absorption of Sandwich Beams Containing Interior Dissipative Multi-Resonators
,”
Ultrasonics
,
76
(
100
), pp.
99
108
.
30.
Yamamoto
,
T.
,
2018
, “
Acoustic Metamaterial Plate Embedded With Helmholtz Resonators for Extraordinary Sound Transmission Loss
,”
J. Appl. Phys.
,
123
(
21
), p.
215110
.
31.
Peng
,
H.
, and
Frank Pai
,
P.
,
2014
, “
Acoustic Metamaterial Plates for Elastic Wave Absorption and Structural Vibration Suppression
,”
Int. J. Mech. Sci.
,
89
(
1
), pp.
350
361
.
32.
Peng
,
H.
,
Frank Pai
,
P.
, and
Deng
,
H.
,
2015
, “
Acoustic Multi-Stopband Metamaterial Plates Design for Broadband Elastic Wave Absorption and Vibration Suppression
,”
Int. J. Mech. Sci.
,
103
(
1
), pp.
104
114
.
You do not currently have access to this content.