Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this article, a simple and efficient method is developed to quench the steady-state vibration of a symmetric laminated composite rectangular plate subjected to multiple harmonics with distinct excitation frequencies. The introduction of the inerter into the traditional dynamic vibration absorber enlarges the solution space for both the feasible attachment locations and the absorber parameters. For a given set of attachment locations, when the traditional vibration absorbers yield physically unrealizable absorber parameters, i.e., negative absorber parameters, an inerter-based vibration absorber can be used such that the absorber parameters become strictly positive. Using the assumed modes method, the governing equations of the laminated composite plate carrying the inerter-based dynamic vibration absorbers are first formulated. A set of constraint equations is established by enforcing nodes at user-specified locations on the plate. Harmonic excitations consisting of a single or multiple distinct excitations are considered. In addition, two attachment scenarios are analyzed: when the attachment and node locations coincide, and when they are distinct. Numerical experiments show that the absorbers’ parameters can be readily determined for both cases, and the proposed method can effectively enforce the desired node locations when the plate is subjected to either a single or multiple harmonic excitations.

References

1.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
,
Boston, MA
.
2.
Frahm
,
H.
,
1909
, “Device for Damping Vibrations of Bodies,” U.S. Patent No. 989958.
3.
Klasztorny
,
M.
,
1995
, “
Reduction of Steady-State Forced Vibrations of Structures With Dynamic Absorbers
,”
Earthquake Eng. Struct. Dyn.
,
24
(
8
), pp.
1155
1172
.
4.
Rana
,
R.
, and
Soong
,
T. T.
,
1998
, “
Parametric Study and Simplified Design of Tuned Mass Dampers
,”
Eng. Struct.
,
20
(
3
), pp.
193
204
.
5.
Zuo
,
L.
,
2009
, “
Effective and Robust Vibration Control Using Series Multiple Tuned-Mass Dampers
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031003
.
6.
Cha
,
P. D.
, and
Zhou
,
X.
,
2006
, “
Imposing Points of Zero Displacements and Zero Slopes Along Any Linear Structure During Harmonic Excitations
,”
J. Sound Vib.
,
297
(
1–2
), pp.
55
71
.
7.
Tursun
,
M.
, and
Eşkinat
,
E.
,
2014
, “
H2 Optimization of Damped-Vibration Absorbers for Suppressing Vibrations in Beams With Constrained Minimization
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021012
.
8.
Cha
,
P. D.
, and
Buyco
,
K.
,
2015
, “
An Efficient Method for Tuning Oscillator Parameters in Order to Impose Nodes on a Linear Structure Excited by Multiple Harmonics
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031018
.
9.
Shen
,
Y. C.
,
Zhou
,
X.
, and
Cha
,
P. D.
,
2018
, “
An Efficient Method to Quench Excess Vibration for a Harmonically Excited Damped Plate
,”
Int. J. Mech. Sci.
,
141
, pp.
372
385
.
10.
Smith
,
M. C.
, and
Wang
,
F. C.
,
2004
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
Veh. Syst. Dyn.
,
42
(
4
), pp.
235
257
.
11.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthquake Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
.
12.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper-Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
.
13.
Wang
,
F. C.
,
Hong
,
M. F.
, and
Chen
,
C. W.
,
2010
, “
Building Suspensions With Inerters
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
224
(
8
), pp.
1605
1616
.
14.
Jiang
,
J. Z.
,
Matamoros-Sanchez
,
A. Z.
,
Goodall
,
R. M.
, and
Smith
,
M. C.
,
2012
, “
Passive Suspensions Incorporating Inerters for Railway Vehicles
,”
Veh. Syst. Dyn.
,
50
(
sup1
), pp.
263
276
.
15.
Hu
,
Y. L.
, and
Chen
,
Z. Q.
,
2015
, “
Performance Evaluation for Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
99
, pp.
297
307
.
16.
Jin
,
X.
,
Chen
,
Z. Q.
, and
Huang
,
Z.
,
2016
, “
Minimization of the Beam Response Using Inerter-Based Passive Vibration Control Configurations
,”
Int. J. Mech. Sci.
,
119
, pp.
80
87
.
17.
Li
,
Y.
,
Jiang
,
J. Z.
, and
Neild
,
S.
,
2017
, “
Inerter-Based Configurations for Main-Landing-Gear Shimmy Suppression
,”
J. Aircr.
,
54
(
2
), pp.
684
693
.
18.
Xing
,
Y. F.
, and
Liu
,
B.
,
2009
, “
New Exact Solutions for Free Vibrations of Thin Orthotropic Rectangular Plates
,”
Compos. Struct.
,
89
(
4
), pp.
567
574
.
19.
Shooshtari
,
A.
, and
Razavi
,
S.
,
2010
, “
A Closed Form Solution for Linear and Nonlinear Free Vibrations of Composite and Fiber Metal Laminated Rectangular Plates
,”
Compos. Struct.
,
92
(
11
), pp.
2663
2675
.
20.
Malekzadeh
,
K.
,
Tafazoli
,
S.
, and
Khalili
,
S. M. R.
,
2010
, “
Free Vibrations of Thick Rectangular Composite Plate With Uniformly Distributed Attached Mass Including Stiffness Effect
,”
J. Compos. Mater.
,
44
(
24
), pp.
2897
2918
.
21.
Bai
,
E.
, and
Chen
,
A.
,
2012
, “
A Symplectic Eigenfunction Expansion Approach for Free Vibration Solutions of Rectangular Kirchhoff Plates
,”
J. Vib. Control
,
19
(
8
), pp.
1208
1215
.
22.
Metin
,
A.
, and
Seckin
,
F.
,
2013
, “
Vibration Analysis of Symmetric Laminated Composite Plates With Attached Mass
,”
Mech. Adv. Mater. Struct.
,
23
(
2
), pp.
136
145
.
23.
Alsaif
,
K. A.
, and
Foda
,
M. A.
,
2011
, “
Control of Steady-State Vibrations of Rectangular Plates
,”
Int. J. Struct. Stab. Dyn.
,
11
(
3
), pp.
535
562
.
24.
Noori
,
B.
, and
Farshidianfar
,
A.
,
2013
, “
Optimum Design of Dynamic Vibration Absorbers for a Beam, Based on H and H2 Optimization
,”
Arch. Appl. Mech.
,
83
(
12
), pp.
1773
1787
.
25.
Moradi
,
H.
,
Sadighi
,
M.
, and
Bakhtiari-Nejad
,
F.
,
2011
, “
Optimum Design of a Tuneable Vibration Absorber With Variable Position to Suppress Vibration of a Cantilever Plate
,”
Int. J. Acoust. Vib.
,
16
(
2
), pp.
55
63
.
26.
Gibson
,
R. F.
,
2016
,
Principles of Composite Materials Mechanics
, 4th ed.,
CRC Press, Taylor & Francis Group
,
New York
.
27.
Chen
,
J. W.
,
Cha
,
P. D.
,
Shen
,
Y. C.
, and
Zhou
,
X.
,
2021
, “
Quenching Vibration on a Harmonically Excited Symmetric Laminated Composite Plate
,”
ASME J. Vib. Acoust.
,
144
(
3
),
p. 031004
.
28.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1657
1662
.
29.
Nakamura
,
Y.
,
Fukukita
,
A.
,
Tamura
,
K.
,
Yamazaki
,
I.
,
Matsuoka
,
T.
,
Hiramoto
,
K.
, and
Sunakoda
,
K.
,
2013
, “
Seismic Response Control Using Electromagnetic Inertial Mass Dampers
,”
Earthquake Eng. Struct. Dyn.
,
43
(
3
), pp.
507
527
.
You do not currently have access to this content.