Abstract

The focus of this investigation is first on assessing the validity to structures under in-plane forces, in particular near buckling, of the reduced order modeling approach for nonlinear geometric response that has been extensively developed in the last two decades. This focus is motivated by a class of piezoelectric energy harvesters that rely on strongly nonlinear behavior, such as large amplitude responses, to achieve broadband energy harvesting. A simple, two-rigid bars linkage that approximates a buckling beam is first considered to discover the features of the nonlinear force–displacement relationship induced by an in-plane loading. It is observed that the corresponding form of this relationship is not consistent with the one derived from a reduced order model (ROM) but can be closely approximated by it over a large displacement range. This analysis emphasizes in particular the role of a group of ROM coefficients that are usually considered unimportant. A similar study is performed next for the buckled harvester modeled within nastran and it is again found that a close match of the force–displacement relationship can be achieved. Based on that positive outlook, a six basis functions ROM of this beam harvester that includes piezoelectric effects is built and identified. It is found to provide a close match of nastran nonlinear predictions over a broad range of transverse and in-plane loadings in static and dynamic conditions. The ROM usefulness in predicting the open-circuit voltage is demonstrated.

References

1.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
2.
Hu
,
N.
, and
Burgueno
,
R.
,
2015
, “
Buckling-Induced Smart Applications: Recent Advances and Trends
,”
Smart Mater. Struct.
,
24
(
6
), p.
063001
.
3.
Arrieta
,
A. F.
,
Hagedorn
,
P.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2010
, “
A Piezoelectric Bistable Plate for Nonlinear Broadband Energy Harvesting
,”
Appl. Phys. Lett.
,
97
(
10
), p.
104102
.
4.
Chen
,
L.
, and
Jiang
,
W.
,
2014
, “
Snap-Through Piezoelectric Energy Harvesting
,”
J. Sound Vib.
,
333
(
18
), pp.
4314
4325
.
5.
Wu
,
N.
,
He
,
Y.
, and
Fu
,
J.
,
2021
, “
Bistable Energy Harvester Using Easy Snap-Through Performance to Increase Output Power
,”
Energy
,
226
, p.
120414
.
6.
Cottone
,
F.
,
Gammaitoni
,
L.
,
Vocca
,
H.
,
Ferrari
,
M.
, and
Ferrari
,
V.
,
2012
, “
Piezoelectric Buckled Beams for Random Vibration Energy Harvesting
,”
Smart Mater. Struct.
,
21
(
3
), p.
035021
.
7.
Vocca
,
H.
,
Cottone
,
F.
,
Neri
,
I.
, and
Gammaitoni
,
L.
,
2013
, “
A Comparison Between Nonlinear Cantilever and Buckled Beam for Energy Harvesting
,”
Eur. Phys. J. Spec. Top.
,
222
(
7
), pp.
1699
1705
.
8.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011007
.
9.
Pennisi
,
G.
,
Mann
,
B. P.
,
Naclerio
,
N.
,
Stephan
,
C.
, and
Michon
,
G.
,
2018
, “
Design and Experimental Study of a Nonlinear Energy Sink Coupled to an Electromagnetic Energy Harvester
,”
J. Sound Vib.
,
437
, pp.
340
357
.
10.
Fang
,
S.
,
Chen
,
K.
,
Xing
,
J.
,
Zhou
,
S.
, and
Liao
,
W.-H.
,
2021
, “
Tuned Bistable Nonlinear Energy Sink for Simultaneously Improved Vibration Suppression and Energy Harvesting
,”
Int. J. Mech. Sci.
,
212
, p.
106838
.
11.
Wang
,
X. Q.
,
Liao
,
Y.
, and
Mignolet
,
M. P.
,
2021
, “
Uncertainty Analysis of Piezoelectric Vibration Energy Harvesters Using a Finite Element Level-Based Maximum Entropy Approach
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
7
(
1
), p.
010906
.
12.
Vyas
,
V.
,
Wang
,
X. Q.
,
Jain
,
A.
, and
Mignolet
,
M. P.
,
2015
, “
Nonlinear Geometric Reduced Order Model for the Response of a Beam With a Piezoelectric Actuator
,”
Proceedings of the 56th SDM Conference (AIAA SciTech)
,
Kissimmee, FL
,
Jan. 5–9
, AIAA Paper No. AIAA-2015-0692.
13.
Mignolet
,
M. P.
,
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Spottswood
,
S. M.
,
2013
, “
A Review of Indirect/Non-intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J. Sound Vib.
,
332
(
10
), pp.
2437
2460
.
14.
Hollkamp
,
J. J.
,
Gordon
,
R. W.
, and
Spottswood
,
S. M.
,
2005
, “
Nonlinear Modal Models for Sonic Fatigue Response Prediction: A Comparison of Methods
,”
J. Sound Vib.
,
284
(
3–5
), pp.
1145
1163
.
15.
Kim
,
K.
,
Radu
,
A.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2013
, “
Nonlinear Reduced Order Modeling of Isotropic and Functionally Graded Plates
,”
Int. J. Non-Linear Mech.
,
49
, pp.
100
110
.
16.
Perez
,
R. A.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2014
, “
Non-Intrusive Structural Dynamic Reduced Order Modeling for Large Deformations: Enhancements for Complex Structures
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031008
.
17.
Przekop
,
A.
,
Guo
,
X.
, and
Rizzi
,
S. A.
,
2012
, “
Alternative Modal Basis Selection Procedures for Nonlinear Random Response Simulation
,”
J. Sound Vib.
,
331
(
17
), pp.
4005
4024
.
18.
Givois
,
A.
,
Grolet
,
A.
,
Thomas
,
O.
, and
Deü
,
J.-F.
,
2019
, “
On the Frequency Response Computation of Geometrically Nonlinear Flat Structures Using Reduced-Order Finite Element Models
,”
Nonlinear Dyn.
,
97
(
2
), pp.
1747
1781
.
19.
Wang
,
X. Q.
,
Khanna
,
V.
,
Kim
,
K.
, and
Mignolet
,
M. P.
,
2021
, “
Nonlinear Reduced Order Modeling of Flat Cantilevered Structures: Challenges and Remedies
,”
ASCE J. Aerosp. Eng.
,
34
(
6
), p.
04021085
.
20.
Mahdiabadi
,
M. K.
,
Tiso
,
P.
,
Brandt
,
A.
, and
Rixen
,
D. J.
,
2021
, “
A Non-intrusive Model-Order Reduction of Geometrically Nonlinear Structural Dynamics Using Modal Derivatives
,”
Mech. Syst. Signal Process
,
147
, p.
107126
.
21.
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2021
, “
Discussion on “A Non-intrusive Model-Order Reduction of Geometrically Nonlinear Structural Dynamics Using Modal Derivatives
,”
Mech. Syst. Signal Process
,
159
, p.
107638
.
22.
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2020
, “
Toward a Systematic Construction of the Basis for Nonlinear Geometric Reduced Order Models
,”
Proceedings of the 11th International Conference on Structural Dynamics (EURODYN 2020)
,
Athens, Greece
, in virtual,
Nov. 23–25
.
23.
Muravyov
,
A. A.
, and
Rizzi
,
S. A.
,
2003
, “
Determination of Nonlinear Stiffness With Application to Random Vibration of Geometrically Nonlinear Structures
,”
Comput. Struct.
,
81
(
15
), pp.
1513
1523
.
24.
Vizzaccaro
,
A.
,
Givois
,
A.
,
Longobardi
,
P.
,
Shen
,
Y.
,
Deü
,
J.-F.
,
Salles
,
L.
,
Touzé
,
C.
, and
Thomas
,
O.
,
2020
, “
Non-intrusive Reduced Order Modelling for the Dynamics of Geometrically Nonlinear Flat Structures Using Three-Dimensional Finite Elements
,”
Comput. Mech.
,
66
(
6
), pp.
1293
1319
.
25.
Shen
,
Y.
,
Vizzaccaro
,
A.
,
Kesmia
,
N.
,
Yu
,
T.
,
Salles
,
L.
,
Thomas
,
O.
, and
Touzé
,
C.
,
2021
, “
Comparison of Reduction Methods for Finite Element Geometrically Nonlinear Beam Structures
,”
Vibration
,
4
(
1
), pp.
175
204
.
26.
Kim
,
E.
, and
Cho
,
M.
,
2017
, “
Equivalent Model Construction for a Non-linear Dynamic System Based on an Element-Wise Stiffness Evaluation Procedure and Reduced Analysis of the Equivalent System
,”
Comput. Mech.
,
60
(
5
), pp.
709
724
.
27.
Shen
,
Y.
,
Béreux
,
N.
,
Frangi
,
A.
, and
Touzé
,
C.
,
2021
, “
Reduced Order Models for Geometrically Nonlinear Structures: Assessment of Implicit Condensation in Comparison With Invariant Manifold Approach
,”
Eur. J. Mech. A/Solids
,
86
, p.
104165
.
28.
Wang
,
Y.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2018
, “
Component-Centric Reduced Order Modeling for the Prediction of the Nonlinear Geometric Response of a Part of a Stiffened Structure
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
13
), p.
121006
.
29.
Kuether
,
R. J.
,
Allen
,
M. S.
, and
Hollkamp
,
J. J.
,
2016
, “
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
,”
AIAA J.
,
54
(
2
), pp.
691
702
.
30.
Kuether
,
R. J.
,
Allen
,
M. S.
, and
Hollkamp
,
J. J.
,
2017
, “
Modal Substructuring of Geometrically Nonlinear Finite Element Models With Interface Reduction
,”
AIAA J.
,
55
(
5
), pp.
1695
1706
.
31.
Mahdiabadi
,
M. K.
,
Bartl
,
A.
,
Xu
,
D.
,
Tiso
,
P.
, and
Rixen
,
D. J.
,
2019
, “
An Augmented Free-Interface-Based Modal Substructuring for Nonlinear Structural Dynamics Including Interface Reduction
,”
J. Sound Vib.
,
462
, p.
114915
.
32.
Perez
,
R. A.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2014
, “
Prediction of Displacement and Stress Fields of a Notched Panel With Geometric Nonlinearity by Reduced Order Modeling
,”
J. Sound Vib.
,
333
(
24
), pp.
6572
6589
.
33.
Wang
,
X. Q.
,
Phlipot
,
G. P.
,
Perez
,
R. A.
, and
Mignolet
,
M. P.
,
2018
, “
Locally Enhanced Reduced Order Modeling for the Nonlinear Geometric Response of Structures with Defects
,”
Int. J. Non-Linear Mech.
,
101
, pp.
1
7
.
34.
O’Hara
,
P. J.
, and
Hollkamp
,
J. J.
,
2014
, “
Modeling Vibratory Damage With Reduced-Order Models and the Generalized Finite Element Method
,”
J. Sound Vib.
,
333
(
24
), pp.
6637
6650
.
35.
Wang
,
X. Q.
,
O'Hara
,
P. J.
,
Mignolet
,
M. P.
, and
Hollkamp
,
J. J.
,
2019
, “
Reduced Order Modeling With Local Enrichment for the Nonlinear Geometric Response of a Cracked Panel
,”
AIAA J.
,
57
(
1
), pp.
421
436
.
36.
Marconi
,
J.
,
Tiso
,
P.
, and
Braghin
,
F.
,
2020
, “
A Nonlinear Reduced Order Model With Parametrized Shape Defects
,”
Comput. Methods Appl. Mech. Eng.
,
360
, p.
112785
.
37.
Hollkamp
,
J. J.
,
Perez
,
R. A.
, and
Spottswood
,
S. M.
,
2017
, “
Design Sensitivities of Components Using Nonlinear Reduced-Order Models and Complex Variables
,”
Proceedings of the International Modal Analysis Conference, IMAC XXXV
,
Garden Grove, CA
,
Jan. 30–Feb. 2
, also in: G. Kerschen, ed., Nonlinear Dynamics, Vol. 1,
Springer
.
38.
Givois
,
A. J.
,
Deü
,
J.-F.
, and
Thomas
,
O.
,
2021
, “
Dynamics of Piezoelectric Structures With Geometric Nonlinearities: A Non-intrusive Reduced Order Modelling Strategy
,”
Comput. Struct.
,
253
, p.
106575
.
39.
Wang
,
X. Q.
,
Song
,
P.
,
Mignolet
,
M. P.
, and
Chen
,
P. C.
,
2021
, “
Reduced Order Nonlinear Damping Model: Formulation and Application to Post-Flutter Aeroelastic Behavior
,”
AIAA J.
,
59
(
10
), pp.
4144
4154
.
40.
Perez
,
R.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2011
, “
Nonlinear Reduced Order Models for Thermoelastodynamic Response of Isotropic and FGM Panels
,”
AIAA J.
,
49
(
3
), pp.
630
641
.
41.
Matney
,
A.
,
Mignolet
,
M. P.
,
Culler
,
A. J.
,
McNamara
,
J. J.
, and
Spottswood
,
S. M.
,
2015
, “
Panel Response Prediction Through Reduced Order Models With Application to Hypersonic Aircraft
,”
Proceedings of the AIAA Science and Technology Forum and Exposition (SciTech2015)
,
Orlando, FL
,
Jan. 5–9
, AIAA Paper No. AIAA-2015-1630.
42.
Matney
,
A. K.
,
Mignolet
,
M. P.
,
Spottswood
,
S. M.
,
Culler
,
A. J.
, and
McNamara
,
J. J.
,
2014
, “
Thermal Reduced Order Model Adaptation to Aero-Thermo-Structural Interactions
,”
Proceedings of the AIAA Science and Technology Forum and Exposition (SciTech2014)
,
National Harbor, MD
,
Jan. 13–17
, Paper No. AIAA-2014-0493.
43.
Matney
,
A.
,
Perez
,
R. A.
,
Spottswood
,
S. M.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2012
, “
Nonlinear Structural Reduced Order Modeling Methods for Hypersonic Structures
,”
Proceedings of the 53rd Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, AIAA Paper No. AIAA-2012-1972.
44.
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2020
, “
“Enrichments of Structural Bases for the Reduced Order Modeling of Heated Structures Undergoing Nonlinear Geometric Response
,”
Proceedings of the International Modal Analysis Conference, IMAC XXXVIII
,
Houston, TX
,
Feb. 10–13
.
45.
Matney
,
A.
,
Perez
,
R.
, and
Mignolet
,
M. P.
, “
Nonlinear Unsteady Thermoelastodynamic Response of a Panel Subjected to an Oscillating Flux by Reduced Order Models
,”
Proceedings of the 52nd Structures, Structural Dynamics and Materials Conference
,
Denver, CO
,
Apr. 4–7 2011
, Paper No. AIAA-2011–2016.
46.
Perez
,
R.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2010
, “
Steady and Unsteady Nonlinear Thermoelastodynamic Response of Panels by Reduced Order Models
,”
Proceedings of the 51st Structures, Structural Dynamics, and Materials Conference
,
Orlando, FL
,
Apr. 12–15
, Paper No. AIAA-2010-2724.
47.
Kuether
,
R. J.
,
Deaner
,
B. J.
,
Hollkamp
,
J. J.
, and
Allen
,
M. S.
,
2015
, “
Evaluation of Geometrically Nonlinear Reduced-Order Models With Nonlinear Normal Modes
,”
AIAA J.
,
53
(
11
), pp.
3273
3285
.
48.
Gordon
,
R. W.
, and
Hollkamp
,
J. J.
,
2011
, “
Reduced-Order Models for Acoustic Response Prediction of a Curved Panel
,”
Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Denver, CO
,
Apr. 4–7
, AIAA Paper No. AIAA-2011-2081.
49.
Perez
,
R.
,
Bartram
,
G.
,
Beberniss
,
T.
,
Wiebe
,
R.
, and
Spottswood
,
S. M.
,
2017
, “
Calibration of Aero-Structural Reduced Order Models Using Full-Field Experimental Measurements
,”
Mech. Syst. Signal Process
,
86
(Part B), pp.
49
65
.
50.
Wiebe
,
R.
,
Perez
,
R. A.
, and
Spottswood
,
S. M.
,
2016
, “
Robust Simulation of Buckled Structures Using Reduced Order Modeling
,”
J. Phys.: Conf. Ser.
,
744
, p.
012118
.
51.
Van Damme
,
C. I.
,
Allen
,
M. S.
, and
Hollkamp
,
J. J.
,
2020
, “
Updating Geometrically Nonlinear Reduced-Order Models Using Nonlinear Modes and Harmonic Balance
,”
AIAA J.
,
58
(
8
), pp.
3553
3568
.
52.
Van Damme
,
C. I.
,
Allen
,
M. S.
, and
Hollkamp
,
J. J.
,
2020
, “
Evaluating Reduced Order Models of Curved Beams for Random Response Prediction Using Static Equilibrium Paths
,”
J. Sound Vib.
,
468
, p.
115018
.
53.
Phlipot
,
G.
,
Wang
,
X. Q.
,
Mignolet
,
M. P.
,
Demasi
,
L.
, and
Cavallaro
,
R.
,
2014
, “
Nonintrusive Reduced Order Modeling for the Nonlinear Geometric Response of Some Joined Wings
,”
Proceedings of the AIAA Science and Technology Forum and Exposition (SciTech2014)
,
National Harbor, MD
,
Jan. 13–17
, AIAA Paper No. AIAA-2014-0151.
54.
Lulf
,
F.
,
Tran
,
D. M.
,
Matthies
,
H. G.
, and
Ohayon
,
R.
,
2015
, “
An Integrated Method for the Transient Solution of Reduced Order Models of Geometrically Nonlinear Structures
,”
Comput. Mech.
,
55
(
2
), pp.
327
344
.
55.
Lin
,
J.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2018
, “
Nonlinear Reduced Order Modeling of Strongly Nonlinear Behavior: A Revisit of a Curved Beam Example
,”
Proceedings of the International Modal Analysis Conference, IMAC XXXVI
,
Orlando, FL
,
Feb. 12–15
.
56.
Lin
,
J.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2019
, “
Nonlinear Reduced Order Modeling of a Cylindrical Shell Exhibiting Mode Veering and Symmetry Breaking
,”
Proceedings of the International Modal Analysis Conference, IMAC XXXVII
,
Orlando, FL
,
Jan. 28–31
.
57.
Wainwright
,
B. A.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2020
, “
Investigation of Out-of-Band Response in Reduced Order Models of Nonlinear Geometric Response
,”
Proceedings of the International Modal Analysis Conference, IMAC XXXVIII
,
Houston, TX
,
Feb. 10–13
.
58.
Wainwright
,
B. A.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2019
, “
Nonlinear Reduced Order Modeling for the Dynamic Response of a Built-up Structure With Strong Asymmetry Through Thickness
,”
Proceedings of the International Modal Analysis Conference, IMAC XXXVII
,
Orlando, FL
,
Jan. 28–31
.
59.
Spottswood
,
S. M.
,
Eason
,
T. G.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2009
, “
Nonlinear Reduced Order Modeling of Curved Beams: A Comparison of Methods
,”
Proceedings of the 50th Structures, Structural Dynamics, and Materials Conference
,
Palm Springs, CA
,
May 4–7
, AIAA Paper No. AIAA-2009-2433.
60.
Spottswood
,
S. M.
,
Hollkamp
,
J. J.
, and
Eason
,
T. G.
,
2010
, “
Reduced-Order Models for a Shallow Curved Beam Under Combined Loading
,”
AIAA J.
,
48
(
1
), pp.
47
55
.
61.
Przekop
,
A.
, and
Rizzi
,
S. A.
,
2007
, “
Dynamic Snap-Through of Thin-Walled Structures by a Reduced-Order Method
,”
AIAA J.
,
45
(
10
), pp.
2510
2519
.
62.
Wang
,
X. Q.
,
Perez
,
R. A.
,
Wainwright
,
B.
,
Wang
,
Y.
, and
Mignolet
,
M. P.
,
2022
, “
Nonintrusive Nonlinear Reduced Order Models for Structures in Large Deformations: Validations to Atypical Structures and Basis Construction Aspects
,”
Vibration
,
5
(
1
), pp.
20
58
.
63.
Capiez-Lernout
,
E.
,
Soize
,
C.
, and
Mignolet
,
M. P.
,
2014
, “
Post-Buckling Nonlinear Static and Dynamical Analyses of Uncertain Cylindrical Shells and Experimental Validation
,”
Comput. Methods Appl. Mech. Eng.
,
271
, pp.
210
230
.
64.
Mignolet
,
M. P.
, and
Soize
,
C.
,
2008
, “
Stochastic Reduced Order Models for Uncertain Geometrically Nonlinear Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
45–48
), pp.
3951
3963
.
65.
Wang
,
X. Q.
,
Perez
,
R.
,
Mignolet
,
M. P.
,
Capillon
,
R.
, and
Soize
,
C.
,
2013
, “
Nonlinear Reduced Order Modeling of Complex Wing Models
,”
Proceedings of the 54th Structures, Structural Dynamics and Materials Conference
,
Boston, MA
,
Apr. 8–11
, AIAA Paper No. AIAA-2013-1520.
66.
Lin
,
J.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2020
, “
Non-intrusive Identification of Nonlinear Reduced Order Models: Symmetry and Tuning
,”
Proceedings of the International Modal Analysis Conference, IMAC XXXVIII
,
Houston, TX
,
Feb. 10–13
.
67.
Lin
,
J.
,
2020
, “
Nonlinear Reduced Order Modeling of Structures Exhibiting a Strong Nonlinearity
,”
Ph.D. thesis
,
Arizona State University
, Tempe, AZ.
You do not currently have access to this content.