Abstract

A size-dependent elasticity theory, founded on variationally consistent formulations, is developed to analyze the wave propagation in nanosized beams. The mixture unified gradient theory of elasticity, integrating the stress gradient theory, the strain gradient model, and the traditional elasticity theory, is invoked to realize the size effects at the ultra-small scale. Compatible with the kinematics of the Timoshenko–Ehrenfest beam, a stationary variational framework is established. The boundary-value problem of dynamic equilibrium along with the constitutive model is appropriately integrated into a single function. Various generalized elasticity theories of gradient type are restored as particular cases of the developed mixture unified gradient theory. The flexural wave propagation is formulated within the context of the introduced size-dependent elasticity theory and the propagation characteristics of flexural waves are analytically addressed. The phase velocity of propagating waves in carbon nanotubes (CNTs) is inversely reconstructed and compared with the numerical simulation results. A viable approach to inversely determine the characteristic length-scale parameters associated with the generalized continuum theory is proposed. A comprehensive numerical study is performed to demonstrate the wave dispersion features in a Timoshenko–Ehrenfest nanobeam. Based on the presented wave propagation response and ensuing numerical illustrations, the original benchmark for numerical analysis is detected.

References

1.
Shihab
,
P.
,
Jalil
,
T.
,
Gulsacan
,
B.
,
Aureli
,
M.
, and
Tung
,
T.
,
2021
, “
Sensor Egregium—An Atomic Force Microscope Sensor for Continuously Variable Resonance Amplification
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
041013
.
2.
Prasad
,
R.
, and
Banerjee
,
A.
,
2021
, “
Flexural Waves in Elastically Coupled Telescopic Metabeams
,”
ASME J. Vib. Acoust.
,
143
(
6
), p.
061009
.
3.
Daeichin
,
M.
,
Miles
,
R. N.
, and
Towfighian
,
S.
,
2020
, “
Experimental Characterization of the Electrostatic Levitation Force in MEMS Transducers
,”
ASME J. Vib. Acoust.
,
142
(
4
), p.
041008
.
4.
Ouakad
,
H. M.
, and
Najar
,
F.
,
2019
, “
Nonlinear Dynamics of MEMS Arches Assuming Out-of-Plane Actuation Arrangement
,”
ASME J. Vib. Acoust.
,
141
(
4
), p.
041010
.
5.
Alqasimi
,
J. E.
, and
Ouakad
,
H. M.
,
2018
, “
Vibrational Response of Initially Deformed Bistable Microbeams Under the Combined Effect of Mechanical Shock Loads and Electrostatic Forces
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021013
.
6.
Elishakoff
,
I.
,
Pentaras
,
D.
,
Dujat
,
K.
,
Versaci
,
C.
,
Muscolino
,
G.
,
Storch
,
J.
,
Bucas
,
S.
, et al
,
2012
,
Carbon Nanotubes and Nano Sensors: Vibrations, Buckling, and Ballistic Impact
,
ISTE-Wiley
,
London
.
7.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(4), pp.
417
438
.
8.
Polizzotto
,
C.
,
2014
, “
Stress Gradient Versus Strain Gradient Constitutive Models Within Elasticity
,”
Int. J. Solids Struct.
,
51
(9), pp.
1809
1818
.
9.
Forest
,
S.
, and
Sab
,
K.
,
2012
, “
Stress Gradient Continuum Theory
,”
Mech. Res. Commun.
,
40
, pp.
16
25
.
10.
Eringen
,
A. C.
,
2002
,
Nonlocal Continuum Field Theories
,
Springer
,
New York
.
11.
Polizzotto
,
C.
,
2015
, “
A Unifying Variational Framework for Stress Gradient and Strain Gradient Elasticity Theories
,”
Eur. J. Mech. A Solids
,
49
, pp.
430
440
.
12.
Banerjee
,
J. R.
,
Papkov
,
S. O.
,
Vo
,
T. P.
, and
Elishakoff
,
I.
,
2021
, “
Dynamic Stiffness Formulation for a Micro Beam Using Timoshenko–Ehrenfest and Modified Couple Stress Theories With Applications
,”
J. Vib. Control.
13.
Alneamy
,
A. M.
,
Heppler
,
G. R.
,
Abdel-Rahman
,
E. M.
, and
Khater
,
M. E.
,
2021
, “
On Design and Analysis of Electrostatic Arch Micro-Tweezers
,”
ASME J. Vib. Acoust.
,
143
(
3
), p.
031001
.
14.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2019
, “
Nonsymmetric Nonlinear Dynamics of Piezoelectrically Actuated Beams
,”
ASME J. Vib. Acoust.
,
141
(
5
), p.
051012
.
15.
Fan
,
M.
,
Deng
,
B.
, and
Tzou
,
H.
,
2018
, “
Dynamic Flexoelectric Actuation and Vibration Control of Beams
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041005
.
16.
Hu
,
K.-M.
,
Zhang
,
W.-M.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2016
, “
Transverse Vibrations of Mixed-Mode Cracked Nanobeams With Surface Effect
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011020
.
17.
Hu
,
K.-M.
,
Zhang
,
W.-M.
,
Dong
,
X.-J.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2015
, “
Scale Effect on Tension-Induced Intermodal Coupling in Nanomechanical Resonators
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021008
.
18.
Lal
,
R.
, and
Dangi
,
C.
,
2021
, “
Effect of In-Plane Load and Thermal Environment on Buckling and Vibration Behavior of Two-Dimensional Functionally Graded Tapered Timoshenko Nanobeam
,”
ASME J. Vib. Acoust.
,
143
(
1
), p.
011010
.
19.
Numanoğlu
,
H. M.
,
Ersoy
,
H.
,
Civalek
,
Ö
, and
Ferreira
,
A. J. M.
,
2021
, “
Derivation of Nonlocal FEM Formulation for Thermo-Elastic Timoshenko Beams on Elastic Matrix
,”
Compos. Struct.
,
273
, p.
114292
.
20.
Pisano
,
A. A.
,
Fuschi
,
P.
, and
Polizzotto
,
C.
,
2021
, “
Integral and Differential Approaches to Eringen’s Nonlocal Elasticity Models Accounting for Boundary Effects With Applications to Beams in Bending
,”
ZAMM J. Appl. Math. Mech.
,
101
(
8
), p.
202000152
.
21.
Barretta
,
R.
,
Faghidian
,
S. A.
, and
Marotti de Sciarra
,
F.
,
2019
, “
Aifantis Versus Lam Strain Gradient Models of Bishop Elastic Rods
,”
Acta Mech.
,
230
(
8
), pp.
2799
2812
.
22.
Civalek
,
Ö
,
Uzun
,
B.
,
Yaylı
,
, and
Akgöz
,
B.
,
2020
, “
Size-Dependent Transverse and Longitudinal Vibrations of Embedded Carbon and Silica Carbide Nanotubes by Nonlocal Finite Element Method
,”
Eur. Phys. J. Plus
,
135
(
4
), p.
381
.
23.
Elishakoff
,
I.
,
Ajenjo
,
A.
, and
Livshits
,
D.
,
2020
, “
Generalization of Eringen's Result for Random Response of a Beam on Elastic Foundation
,”
Eur. J. Mech. A Solids
,
81
, p.
103931
.
24.
Waksmanski
,
N.
, and
Pan
,
E.
,
2017
, “
Nonlocal Analytical Solutions for Multilayered One-Dimensional Quasicrystal Nanoplates
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021006
.
25.
Romano
,
G.
, and
Diaco
,
M.
,
2021
, “
On Formulation of Nonlocal Elasticity Problems
,”
Meccanica
,
56
(
6
), pp.
1303
1328
.
26.
Aifantis
,
A. C.
,
2011
, “
On the Gradient Approach—Relation to Eringen’s Nonlocal Theory
,”
Int. J Eng. Sci.
,
49
(
12
), pp.
1367
1377
.
27.
Lim
,
C. W.
,
Zhang
,
G.
, and
Reddy
,
J. N.
,
2015
, “
A Higher-Order Nonlocal Elasticity and Strain Gradient Theory and Its Applications in Wave Propagation
,”
J. Mech. Phys. Solids
,
78
, pp.
298
313
.
28.
Faghidian
,
S. A.
,
2021
, “
Flexure Mechanics of Nonlocal Modified Gradient Nanobeams
,”
J. Comput. Des. Eng
,
8
(
3
), pp.
949
959
.
29.
Faghidian
,
S. A.
,
2021
, “
Contribution of Nonlocal Integral Elasticity to Modified Strain Gradient Theory
,”
Eur. Phys. J. Plus
,
136
(
5
), p.
559
.
30.
Li
,
L.
,
Lin
,
R.
, and
Ng
,
T. Y.
,
2020
, “
Contribution of Nonlocality to Surface Elasticity
,”
Int. J. Eng. Sci.
,
152
, p.
103311
.
31.
Jiang
,
Y.
,
Li
,
L.
, and
Hu
,
Y.
,
2022
, “
A Nonlocal Surface Theory for Surface–Bulk Interactions and Its Application to Mechanics of Nanobeams
,”
Int. J. Eng. Sci.
,
172
, p.
103624
.
32.
Faghidian
,
S. A.
,
Żur
,
K. K.
, and
Reddy
,
J. N.
,
2022
, “
A Mixed Variational Framework for Higher-Order Unified Gradient Elasticity
,”
Int. J. Eng. Sci.
,
170
, p.
103603
.
33.
Monaco
,
G. T.
,
Fantuzzi
,
N.
,
Fabbrocino
,
F.
, and
Luciano
,
R.
,
2021
, “
Hygro-thermal Vibrations and Buckling of Laminated Nanoplates Via Nonlocal Strain Gradient Theory
,”
Compos. Struct.
,
262
, p.
113337
.
34.
Monaco
,
G. T.
,
Fantuzzi
,
N.
,
Fabbrocino
,
F.
, and
Luciano
,
R.
,
2021
, “
Trigonometric Solution for the Bending Analysis of Magneto-Electro-Elastic Strain Gradient Nonlocal Nanoplates in Hygro-Thermal Environment
,”
Mathematics
,
9
(
5
), p.
567
.
35.
Jena
,
S. K.
,
Chakraverty
,
S.
, and
Jena
,
R. M.
,
2020
, “
Stability Analysis of Timoshenko Nanobeam With Material Uncertainties Using a Double-Parametric Form-Based Analytical Approach and Monte Carlo Simulation Technique
,”
Eur. Phys. J. Plus
,
135
(
7
), p.
536
.
36.
Faghidian
,
S. A.
,
2020
, “
Two-Phase Local/Nonlocal Gradient Mechanics of Elastic Torsion
,”
Math. Methods Appl. Sci.
37.
Faghidian
,
S. A.
,
2020
, “
Higher-Order Mixture Nonlocal Gradient Theory of Wave Propagation
,”
Math. Methods Appl. Sci.
38.
Jena
,
S. K.
, and
Chakraverty
,
S.
,
2019
, “
Dynamic Behavior of an Electromagnetic Nanobeam Using the Haar Wavelet Method and the Higher-Order Haar Wavelet Method
,”
Eur. Phys. J. Plus
,
134
(
10
), p.
538
.
39.
Bentley
,
C. S.
, and
Harne
,
R. L.
,
2022
, “
Acoustic Wave Focusing From Reconfigurable Acoustic Arrays Based on a Bricard-Miura Synthesis
,”
ASME J. Vib. Acoust.
,
144
(
4
), p.
041014
.
40.
Prasad
,
R.
,
Baxy
,
A.
, and
Banerjee
,
A.
,
2022
, “
Wave Propagation in Tapered Periodic Curved Meta-Frame Using Floquet Theory
,”
ASME J. Vib. Acoust.
,
144
(
3
), p.
031005
.
41.
Su
,
Y.-C.
, and
Ko
,
L.-H.
,
2022
, “
Acoustic Wave Splitting and Wave Trapping Designs
,”
ASME J. Vib. Acoust.
,
144
(
3
), p.
034502
.
42.
Kumar
,
A.
, and
Kapuria
,
S.
,
2022
, “
Finite Element Simulation of Axisymmetric Elastic and Electroelastic Wave Propagation Using Local-Domain Wave Packet Enrichment
,”
ASME J. Vib. Acoust.
,
144
(
2
), p.
021011
.
43.
Jia
,
N.
,
Peng
,
Z.
,
Yao
,
Y.
,
Wei
,
P.
, and
Chen
,
S.
,
2022
, “
Dynamic Stress Concentration Factor Around a Spherical Nanocavity Under a Plane p-Wave
,”
ASME J. Vib. Acoust.
,
144
(
5
), p.
051002
.
44.
Mei
,
C.
,
2021
, “
Free and Forced Wave Vibration Analysis of a Timoshenko Beam/Frame Carrying a Two Degrees-of-Freedom Spring–Mass System
,”
ASME J. Vib. Acoust.
,
143
(
6
), p.
061008
.
45.
Reddy
,
J. N.
,
2017
,
Energy Principles and Variational Methods in Applied Mechanics
, 3rd ed.,
Wiley
,
New York
.
46.
Żur
,
K. K.
, and
Faghidian
,
S. A.
,
2021
, “
Analytical and Meshless Numerical Approaches to Unified Gradient Elasticity Theory
,”
Eng. Anal. Boundary Elem.
,
130
, pp.
238
248
.
47.
Faghidian
,
S. A.
,
Żur
,
K. K.
,
Pan
,
E.
, and
Kim
,
J.
,
2022
, “
On the Analytical and Meshless Numerical Approaches to Mixture Stress Gradient Functionally Graded Nano-Bar in Tension
,”
Eng. Anal. Boundary Elem.
,
134
, pp.
571
580
.
48.
Khasawneh
,
F. A.
, and
Segalman
,
D.
,
2019
, “
Exact and Numerically Stable Expressions for Euler–Bernoulli and Timoshenko Beam Modes
,”
Appl. Acoust.
,
151
, pp.
215
228
.
49.
Myers
,
A. D.
, and
Khasawneh
,
F. A.
,
2022
, “
Damping Parameter Estimation Using Topological Signal Processing
,”
Mech. Syst. Sig. Process.
,
174
, p.
109042
.
50.
Brake
,
M. R.
, and
Segalman
,
D. J.
,
2013
, “
Modelling Localized Nonlinearities in Continuous Systems Via the Method of Augmentation by Non-smooth Basis Functions
,”
Proc. R. Soc. A
,
469
(
2158
), p.
20130260
.
51.
Elishakoff
,
I.
,
2020
,
Handbook of Timoshenko–Ehrenfest Beam and Uflyand–Mindlin Plate Theories
,
World Scientific
,
Singapore
.
52.
Wu
,
J. X.
,
Li
,
X. F.
, and
Cao
,
W. D.
,
2013
, “
Flexural Waves in Multi-Walled Carbon Nanotubes Using Gradient Elasticity Beam Theory
,”
Comput. Mater. Sci.
,
67
, pp.
188
195
.
53.
Faghidian
,
S. A.
,
Żur
,
K. K.
,
Reddy
,
J. N.
, and
Ferreira
,
A. J. M.
,
2022
, “
On the Wave Dispersion in Functionally Graded Porous Timoshenko–Ehrenfest Nanobeams Based on the Higher-Order Nonlocal Gradient Elasticity
,”
Compos. Struct.
,
279
, p.
114819
.
54.
Wang
,
L.
, and
Hu
,
H.
,
2005
, “
Flexural Wave Propagation in Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
71
(
19
), p.
195412
.
55.
Faghidian
,
S. A.
,
2017
, “
Analytical Inverse Solution of Eigenstrains and Residual Fields in Autofrettaged Thick-Walled Tubes
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031205
.
56.
Faghidian
,
S. A.
,
2017
, “
Analytical Approach for Inverse Reconstruction of Eigenstrains and Residual Stresses in Autofrettaged Spherical Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041202
.
57.
Khorshidi
,
M. A.
,
2020
, “
Validation of Weakening Effect in Modified Couple Stress Theory: Dispersion Analysis of Carbon Nanotubes
,”
Int. J. Mech. Sci.
,
170
, p.
105358
.
58.
Caprio
,
M. A.
,
2005
, “
LevelScheme: A Level Scheme Drawing and Scientific Figure Preparation System for Mathematica
,”
Comput. Phys. Commun.
,
171
(
2
), pp.
107
118
.
You do not currently have access to this content.