Abstract

Resonance ultrasound spectroscopy (RUS) is a nondestructive technique for evaluating elastic and an-elastic material properties. The frequencies of free vibrations for a carefully crafted sample are measured, and material properties can be extracted from this. In one popular application, the determination of monocrystal elasticity, the results are not always reliable. In some cases, the resonant frequencies are insensitive to changes in certain elastic constants or their linear combinations. Previous work has been done to characterize these sensitivity issues in materials with isotropic and cubic symmetry. This work examines the sensitivity of elastic constant measurements by the RUS method for materials with hexagonal symmetry, such as titanium-diboride. We investigate the reliability of RUS data and explore supplemental measurements, namely, surface acoustic wave (SAW) to obtain an accurate and complete set of elastic constants.

References

1.
Kinney
,
J. H.
,
Gladden
,
J. R.
,
Marshall
,
G. W.
,
Marshall
,
S. J.
,
So
,
J. H.
, and
Maynard
,
J. D.
,
2004
, “
Resonant Ultrasound Spectroscopy Measurements of the Elastic Constants of Human Dentin
,”
J. Biomech.
,
37
(
4
), pp.
437
441
.
2.
Bernard
,
S.
,
Grimal
,
Q.
, and
Laugier
,
P.
,
2013
, “
Accurate Measurement of Cortical Bone Elasticity Tensor With Resonant Ultrasound Spectroscopy
,”
J. Mech. Behav. Biomed. Mater.
,
18
, pp.
12
19
.
3.
Sarrao
,
J. L.
,
Chen
,
S. R.
,
Visscher
,
W. M.
,
Lei
,
M.
,
Kocks
,
U. F.
, and
Migliori
,
A.
,
1994
, “
Determination of the Crystallographic Orientation of a Single-Crystal Using Resonant Ultrasound Spectroscopy
,”
Rev. Sci. Instrum.
,
65
(
6
), pp.
2139
2140
.
4.
Farzbod
,
F.
, and
Hurley
,
D. H.
,
2012
, “
Using Eigenmodes to Perform the Inverse Problem Associated With Resonant Ultrasound Spectroscopy
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
59
(
11
), pp.
2470
2475
.
5.
Rossin
,
J.
,
Goodlet
,
B.
,
Torbet
,
C.
,
Musinski
,
W.
,
Cox
,
M.
,
Miller
,
J.
,
Groeber
,
M.
, et al
,
2020
, “
Assessment of Grain Structure Evolution With Resonant Ultrasound Spectroscopy in Additively Manufactured Nickel Alloys
,”
Mater. Charact.
,
167
, p.
110501
.
6.
McGuigan
,
S.
,
Arguelles
,
A. P.
,
Obaton
,
A.-F.
,
Donmez
,
A. M.
,
Riviere
,
J.
, and
Shokouhi
,
P.
,
2021
, “
Resonant Ultrasound Spectroscopy for Quality Control of Geometrically Complex Additively Manufactured Components
,”
Addit. Manuf.
,
39
, p.
101808
.
7.
Balakirev
,
F. F.
,
Ennaceur
,
S. M.
,
Migliori
,
R. J.
,
Maiorov
,
B.
, and
Migliori
,
A.
,
2019
, “
Resonant Ultrasound Spectroscopy: The Essential Toolbox
,”
Rev. Sci. Instrum.
,
90
(
12
), p.
121401
.
8.
Ogi
,
H.
,
Ledbetter
,
H.
,
Kim
,
S.
, and
Hirao
,
M.
,
1999
, “
Contactless Mode-Selective Resonance Ultrasound Spectroscopy: Electromagnetic Acoustic Resonance
,”
J. Acoust. Soc. Am.
,
106
(
2
), pp.
660
665
.
9.
Sedlak
,
P.
,
Landa
,
M.
,
Seiner
,
H.
,
Bicanova
,
L.
, and
Heller
,
L.
,
2008
, “
Non-Contact Resonant Ultrasound Spectroscopy for Elastic Constants Measurement
,”
1st International Symposium on Laser Ultrasonics: Science, Technology and Applications
,
Montreal, Canada
,
July 16–18
.
10.
Hurley
,
D. H.
,
Reese
,
S. J.
,
Park
,
S. K.
,
Utegulov
,
Z.
,
Kennedy
,
J. R.
, and
Telschow
,
K. L.
,
2010
, “
In Situ Laser-Based Resonant Ultrasound Measurements of Microstructure Mediated Mechanical Property Evolution
,”
J. Appl. Phys.
,
107
(
6
), p.
063510
.
11.
Reese
,
S. J.
,
Telschow
,
K. L.
,
Lillo
,
T. M.
, and
Hurley
,
D. H.
,
2008
, “
On the Establishment of a Method for Characterization of Material Microstructure Through Laser-Based Resonant Ultrasound Spectroscopy
,”
Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control
,
55
(
4
), pp.
770
777
.
12.
Farzbod
,
F.
,
2013
, “
Resonant Ultrasound Spectroscopy for a Sample With Cantilever Boundary Condition Using Rayleigh-Ritz Method
,”
J. Appl. Phys.
,
114
(
2
), p.
024902
.
13.
Migliori
,
A.
,
Sarrao
,
J. L.
,
Visscher
,
W. M.
,
Bell
,
T. M.
,
Lei
,
M.
,
Fisk
,
Z.
, and
Leisure
,
R. G.
,
1993
, “
Resonant Ultrasound Spectroscopic Techniques for Measurement of the Elastic Moduli of Solids
,”
Phys. B
,
183
(
1–2
), pp.
1
24
.
14.
Bales
,
B.
,
Petzold
,
L.
,
Goodlet
,
B. R.
,
Lenthe
,
W. C.
, and
Pollock
,
T. M.
,
2018
, “
Bayesian Inference of Elastic Properties With Resonant Ultrasound Spectroscopy
,”
J. Acoust. Soc. Am.
,
143
(
1
), pp.
71
83
.
15.
Bernard
,
S.
,
Marrelec
,
G.
,
Laugier
,
P.
, and
Grimal
,
Q.
,
2015
, “
Bayesian Normal Modes Identification and Estimation of Elastic Coefficients in Resonant Ultrasound Spectroscopy
,”
Inverse Probl.
,
31
(
6
), p.
065010
.
16.
Livings
,
R.
,
Bachman
,
W.
, and
Biedermann
,
E.
,
2019
, “
Characterizing Polymer O-Rings Nondestructively Using Resonant Ultrasound Spectroscopy
,”
46th Annual Review of Progress in Quantitative Nondestructive Evaluation
,
Portland, OR
,
ASME
.
17.
Spoor
,
P.
,
Maynard
,
J.
,
Pan
,
M.
,
Green
,
D.
,
Hellmann
,
J.
, and
Tanaka
,
T.
,
1997
, “
Elastic Constants and Crystal Anisotropy of Titanium Diboride
,”
Appl. Phys. Lett.
,
70
(
15
), pp.
1959
1961
.
18.
Farzbod
,
F.
, and
Scott-Emuakpor
,
O. E.
,
2019
, “
Resonant Ultrasound Spectroscopy: Sensitivity Analysis for Isotropic Materials and Anisotropic Materials With Cubic Symmetry
,”
ASME J. Vib. Acoust.
,
141
(
2
), p. 021010.
19.
Hurley
,
D. H.
,
Reese
,
S. J.
, and
Farzbod
,
F.
,
2012
, “
Application of Laser-Based Resonant Ultrasound Spectroscopy to Study Texture in Copper
,”
J. Appl. Phys.
,
111
(
5
), p.
053527
.
20.
Landa
,
M.
,
Sedlák
,
P.
,
Seiner
,
H.
,
Heller
,
L.
,
Bicanová
,
L.
,
Šittner
,
P.
, and
Novák
,
V.
,
2009
, “
Modal Resonant Ultrasound Spectroscopy for Ferroelastics
,”
Appl. Phys. A
,
96
(
3
), pp.
557
567
.
21.
Ledbetter
,
H.
, and
Tanaka
,
T.
,
2009
, “
Elastic-Stiffness Coefficients of Titanium Diboride
,”
J. Res. Natl. Inst. Stand. Technol.
,
114
(
6
), pp.
333
339
.
22.
Ledbetter
,
H.
, and
Migliori
,
A.
,
2006
, “
A General Elastic-Anisotropy Measure
,”
J. Appl. Phys.
,
100
(
6
), p.
063516
.
23.
Visscher
,
W. M.
,
Visscher
,
W. M.
,
Migliori
,
A.
,
Mialiori
,
A.
,
Bell
,
T. M.
,
Bell
,
T. M.
,
Reinert
,
R. A.
, and
Reinert
,
R. A.
,
1991
, “
On the Normal Modes of Free Vibration of Inhomogeneous and Anisotropic Elastic Objects
,”
J. Acoust. Soc. Am.
,
90
(
4
), pp.
2154
2162
.
24.
Migliori
,
A.
, and
Sarrao
,
J. L.
,
1997
,
Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation
,
J. Wiley
,
New York
.
25.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: the Primer
,
John Wiley & Sons
.
26.
Zhang
,
C.
,
Chu
,
J.
, and
Fu
,
G.
,
2013
, “
Sobol’s Sensitivity Analysis for a Distributed Hydrological Model of Yichun River Basin, China
,”
J. Hydrol.
,
480
, pp.
58
68
.
27.
Jordan
,
M.
,
Millinger
,
M.
, and
Thrän
,
D.
,
2020
, “
Robust Bioenergy Technologies for the German Heat Transition: A Novel Approach Combining Optimization Modeling With Sobol’ Sensitivity Analysis
,”
Appl. Energy
,
262
, p.
114534
.
28.
Marelli
,
S.
,
Lamas
,
C.
,
Sudret
,
B.
,
Konakli
,
K.
, and
Mylonas
,
C.
,
2019
, “
UQLab User Manual–Sensitivity Analysis
,” Report number UQLAB-V1.4–106, pp.
1
80
.
29.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
, “UQLab: A Framework for Uncertainty Quantification in Matlab,” Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management, pp.
2554
2563
.
30.
D'Errico
,
J.
,
2021
, “
Adaptive Robust Numerical Differentiation
,”
MATLAB Central File Exchange
, https://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation), Accessed March 20, 2021.
31.
Sedlák
,
P.
,
Seiner
,
H.
,
Zídek
,
J.
,
Janovská
,
M.
, and
Landa
,
M.
,
2014
, “
Determination of All 21 Independent Elastic Coefficients of Generally Anisotropic Solids by Resonant Ultrasound Spectroscopy: Benchmark Examples
,”
Exp. Mech.
,
54
(
6
), pp.
1073
1085
.
32.
Gilman
,
J.
, and
Roberts
,
B.
,
1961
, “
Elastic Constants of TiC and TiB2
,”
J. Appl. Phys.
,
32
(
7
), pp.
1405
1405
.
33.
Du
,
X.
, and
Zhao
,
J.-C.
,
2017
, “
Facile Measurement of Single-Crystal Elastic Constants From Polycrystalline Samples
,”
Npj Comput. Mater.
,
3
(
1
).
34.
Hurley
,
D. H.
,
2019
, “
Pump-Probe Laser Ultrasonics: Characterization of Material Microstructure
,”
IEEE Nanotechnol. Mag.
,
13
(
3
), pp.
29
38
.
35.
Rogers
,
J. A.
,
Fuchs
,
M.
,
Banet
,
M. J.
,
Hanselman
,
J. B.
,
Logan
,
R.
, and
Nelson
,
K. A.
,
1997
, “
Optical System for Rapid Materials Characterization With the Transient Grating Technique: Application to Nondestructive Evaluation of Thin Films Used in Microelectronics
,”
Appl. Phys. Lett.
,
71
(
2
), pp.
225
227
.
36.
Grabec
,
T.
,
Sedlák
,
P.
,
Stoklasová
,
P.
,
Thomasová
,
M.
,
Shilo
,
D.
,
Kabla
,
M.
,
Seiner
,
H.
, and
Landa
,
M.
,
2016
, “
In Situ Characterization of Local Elastic Properties of Thin Shape Memory Films by Surface Acoustic Waves
,”
Smart Mater. Struct.
,
25
(
12
), p.
127002
.
37.
Du
,
X.
,
2018
,
Laser-Ultrasonic Measurement of Single-Crystal Elastic Constants From Polycrystalline Samples by Measuring and Modeling Surface Acoustic Wave Velocities
,
ProQuest Dissertations Publishing
.
38.
Ting
,
T. C. T.
,
2006
, “
Longitudinal and Transverse Waves in Anisotropic Elastic Materials
,”
Acta Mech.
,
185
(
3–4
), pp.
147
164
.
39.
Stoklasová
,
P.
,
Grabec
,
T.
,
Zoubková
,
K.
,
Sedlák
,
P.
,
Krátký
,
S.
, and
Seiner
,
H.
,
2021
, “
Laser-Ultrasonic Characterization of Strongly Anisotropic Materials by Transient Grating Spectroscopy
,”
Exp. Mech.
,
61
(
4
), pp.
663
676
.
You do not currently have access to this content.