Abstract

This paper presents a new approach to predicting an incipient critical speed in a rotating shaft. Based on the classical governing equations of motion for an eccentric mass on a flexible shaft (the Jeffcott rotor model), the approach is centered on examining the behavior of small perturbations or random disturbances to infer the approach of a critical speed (resonance). Such disturbances, that may be based on intentional probing, or simply the result of naturally occurring fluctuations, cause small transients. It is the changing nature of these transients (as characterized by their associated eigenvalues) that is used to assess the proximity to a critical speed. In this paper, the material developed is based on analysis, but generating the data from simulations or experiments will be the next step. The approach is a kind of stress-test, conceptually not dissimilar to structural health monitoring and damage detection but here directed toward the lead-up to resonance.

References

1.
Ozguven
,
H. N.
,
1984
, “
On the Critical Speed of Continuous Shaft-Disk Systems
,”
ASME J. Vib. Acoust.
,
106
, pp.
59
61
.
2.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
.
3.
Renshaw
,
A. A.
,
1998
, “
Critical Speed for Floppy Disks
,”
ASME J. Appl. Mech.
,
65
(1), pp.
116
120
.
4.
Parker
,
R. G.
,
1998
, “
On the Eigenvalues and Critical Speeds Stability of Gyroscopic Continua
,”
ASME J. Appl. Mech.
,
65
(1), pp.
134
140
.
5.
Genta
,
G.
,
2005
,
Dynamics of Rotating Systems
,
Springer
,
New York
.
6.
Vance
,
J.
,
Zeidan
,
F.
, and
Murphy
,
B.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
New York
.
7.
Friswell
,
M. I.
,
Penny
,
J. E. T.
,
Garvey
,
S. D.
, and
Lees
,
A. W.
,
2010
,
Dynamics of Rotating Machines
,
Cambridge University Press
.
8.
Thomson
,
W. T.
,
1981
,
Theory of Vibration with Applications
, 2nd ed.,
Prentice Hall
.
9.
den Hartog
,
J. P.
,
1984
,
Mechanical Vibration
,
Dover
.
10.
Lewis
,
R. M.
,
1932
, “
Vibration During Acceleration Through a Critical Speed
,”
J. Appl. Mech.
,
54
, pp.
253
257
.
11.
Levy
,
S.
,
1963
, “
Critical Speed Damper
,”
ASME J. Appl. Mech.
,
30
(3), pp.
463
464
.
12.
Todd
,
M. D.
,
Virgin
,
L. N.
, and
Gottwald
,
J. A.
,
1996
, “
The Non-stationary Transition Through Resonance
,”
Nonlinear Dyn.
,
10
, pp.
31
48
.
13.
Ishida
,
Y.
,
Yasuda
,
K.
, and
Murakami
,
S.
,
1997
, “
Nonstationary Oscillation of a Rotating Shaft with Nonlinear Spring Characteristics During Acceleration Through a Major Critical Speed (a Discussion by the Asymptotic Method and the Complex-FFT Method)
,”
ASME J. Vib. Acoust.
,
119
, pp.
31
36
.
14.
Warner
,
G. M.
, and
Renshaw
,
A. A.
,
2001
, “
Thickness Profiles for Rotating Circular Disks that Maximize Critical Speed
,”
ASME J. Appl. Mech.
,
68
(3), pp.
505
507
.
15.
Kirk
,
R. G.
, and
Gunter
,
E. J.
,
1972
, “
The Effect of Support Flexibility and Damping on the Synchronous Response of a Single-mass Flexible Rotor
,”
ASME J. Eng. Indus.
,
94
, pp.
221
232
.
16.
Hassenpflug
,
H. L.
,
Flack
,
R. D.
, and
Gunter
,
E. J.
,
1980
, “
Experimental Study of the Critical Speed Response, of a Jeffcott Rotor with Acceleration
,”
J. Franklin Inst.
,
310
, pp.
77
88
.
17.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2005
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-based Maintenance
,”
Mech. Syst. Signal. Process.
,
20
, pp.
1483
1510
.
18.
Mahmoudi
,
A.
,
Hosseini
,
S. A. A.
, and
Zamanian
,
M.
,
2016
, “
Nonstationary Analysis of Nonlinear Rotating Shafts Passing Through Critical Speed Excited by a Nonideal Energy Source
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
232
, pp.
572
584
.
19.
Lund
,
J.
,
1974
, “
Stability and Damped Critical Speeds of a Flexible Rotor
,”
ASME J. Eng. Indus.
,
96
, pp.
609
517
.
20.
Yamamoto
,
T.
, and
Ishida
,
Y.
,
2001
,
Linear and Nonlinear Rotordynamics
,
Wiley
.
21.
Swanson
,
E.
,
Powell
,
C. D.
, and
Weissman
,
S.
,
2005
, “
A Practical Review of Rotating Machinery Critical Speeds and Modes
,”
Sound Vib.
,
39
(
5
), pp.
10
17
.
22.
Nelson
,
F. C.
,
2007
, “
Rotor Dynamics Without Equations
,”
Int. J. Comadem
,
10
, pp.
2
10
.
23.
White
,
R. J.
,
Measurement techniques for estimating critical speed of drivelines
.
Sound and Vibration
, (2017-01-1800), September 2017.
24.
Eissa
,
M.
, and
Saeed
,
N. A.
,
2018
, “
Nonlinear Vibration Control of a Horizontally Supported Jeffcott-rotor System
,”
J. Vib. Control
,
24
, pp.
5898
5921
.
25.
Sinou
,
J. J.
,
Nechak
,
L.
, and
Besset
,
S.
,
2018
, “
Kriging Metamodeling in Rotordynamics: Application for Predicting Critical Speeds and Vibrations of a Flexible Rotor
,”
Complexity
,
2018
, pp.
1
26
.
26.
Murphy
,
K. D.
,
Bayly
,
P. V.
,
Virgin
,
L. N.
, and
Gottwald
,
J. A.
,
1994
, “
Measuring the Stability of Periodic Attractors Using Perturbation-induced Transients: Applications to Two Nonlinear Oscillators
,”
J. Sound. Vib.
,
172
, pp.
85
102
.
27.
Walter
,
E.
, and
Pronzato
,
L.
,
1997
,
Identification of Parametric Models From Experimental Data
,
Springer
.
28.
Qi
,
K.
,
He
,
Z.
,
Li
,
Z.
,
Zi
,
Y.
, and
Chen
,
X.
,
2008
, “
Vibration Based Operational Modal Analysis of Rotor Systems
,”
Measurement
,
41
(
7
), pp.
810
816
.
29.
Thompson
,
J. M. T.
, and
Virgin
,
L. N.
,
1986
, “
Predicting a Jump to Resonance Using Transient Maps and Beats
,”
Int. J. Nonlinear Mech.
,
21
, pp.
205
216
.
30.
Southwell
,
R. V.
,
1932
, “
On the Analysis of Experimental Observations in Problems of Elastic Stability
,”
Proc. R. Soc. London A
,
135
, pp.
601
616
.
31.
Cole
,
H. A.
,
On-line failure detection and damping measurement of aerospace structures by random decrement
. Technical Report CR-2205, NASA, 1973.
32.
Plaut
,
R. H.
, and
Virgin
,
L. N.
,
1990
, “
Use of Frequency Data to Predict Buckling
,”
ASCE J. Eng. Mech.
,
116
, pp.
2330
2335
.
33.
Thompson
,
J. M. T.
, and
Virgin
,
L. N.
,
2019
, “
Instabilities of Nonconservative Fluid-loaded Systems
,”
Int. J. Bifur. Chaos
,
29
, p.
1930039
.
34.
Guckenheimer
,
J.
, and
Holmes
,
P. J.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer-Verlag
.
35.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics
,
Wiley
.
36.
Mills
,
S. R. W.
,
2010
,
Vibration Monitoring and Analysis Handbook
,
British Institute of Non-Destructive Testing
.
37.
Plaut
,
R. H.
,
Andruet
,
R. H.
, and
Suherman
,
S.
,
1994
, “
Behavior of a Cracked Rotating Shaft During Passage Through a Critical Speed
,”
J. Sound. Vib.
,
173
, pp.
577
589
.
38.
Frederick
,
A. T.
, and
Chopra
,
I.
,
1990
, “
Assessment of Transient Analysis Techniques for Rotor Stability Testing
,”
J. Am. Helicopter Soc.
,
35
, pp.
39
50
.
39.
Ehrich
,
F. E.
,
1992
,
Handbook of Rotordynamics
,
McGraw-Hill
.
40.
Courant
,
R.
, and
Hilbert
,
D.
,
1989
,
Methods of Mathematical Physics
,
Wiley Classics Library
.
41.
Crandall
,
S. H.
,
1970
, “
The Role of Damping in Vibration Theory
,”
J. Sound. Vib.
,
11
, pp.
3
18
.
42.
Virgin
,
L. N.
,
Knight
,
J. D.
, and
Plaut
,
R. H.
,
2015
, “
A New Method for Predicting Critical Speeds in Rotordynamics
,”
ASME J. Eng. Gas Turbines Power
,
138
, p.
022504
.
43.
Plaut
,
R. H.
,
Virgin
,
L. N.
, and
Knight
,
J. D.
,
2017
, “
Predicting Critical Speeds in Various Rotordynamics Problems
,”
J. Mech. Eng. Sci.
,
23
, pp.
3913
3922
.
44.
Jordan
,
D. W.
, and
Smith
,
P.
,
1999
,
Nonlinear Ordinary Differential Equations
,
Oxford University Press
.
45.
Wiggins
,
S.
,
1990
,
An Introduction to Applied Dynamical Systems Theory and Chaos
,
Springer-Verlag
.
46.
Eggert
,
D.
, and
Varaiya
,
P.
,
1967
, “
Affine Dynamical Systems
,”
J. Comput. Syst. Sci.
,
1
, pp.
330
348
.
47.
Smith
,
P.
, and
Smith
,
R. C.
,
1990
,
Mechanics
,
Wiley
.
48.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
,
1986
,
Nonlinear Dynamics and Chaos
,
Wiley
.
49.
Bishop
,
S. R.
, and
Franciosi
,
C.
,
1987
, “
Use of Rotation Numbers to Predict the Incipient Folding of a Periodic Orbit
,”
Appl. Math. Model.
,
11
, pp.
117
126
.
50.
Boyland
,
P. L.
,
1986
, “
Bifurcations of Circle Maps: Arnold Tongues, Bistability and Rotation Intervals
,”
Commun. Math. Phys.
,
106
, pp.
353
381
.
51.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
, p.
821824
.
52.
Lathrop
,
D. P.
, and
Kostelich
,
E. J.
,
1989
, “
Characterization of An Experimental Strange Attractor by Periodic Orbits
,”
Phys. Rev. A.
,
40
, p.
4028
.
You do not currently have access to this content.