Abstract

Over the last decades, the search for fast and efficient transportation systems has raised the interest toward maglev technologies. In this scenario, the Hyperloop paradigm is regarded as a breakthrough for future mobility. However, its practical implementation requires the solution of key shortcomings. Among these, the stability of the electrodynamic levitation system remains partially unexplored. The state of the art presents numerous attempts to attain stable behavior. In recent works, the stabilization of maglev vehicles has been addressed only for the vertical dynamics. Nevertheless, stable operation of all degree-of-freedom is required for a successful implementation of these transportation systems. The present paper addresses the full stabilization of a downscaled vehicle where levitation and guidance are provided by electrodynamic means. To this end, a design methodology supported by analytical modeling is proposed, where the degree-of-freedom are stabilized by suitably introducing secondary suspension elements. The design of the secondary suspension and the guidance system is obtained through the optimization of stability and dynamic performance. Then, a multibody model is developed. Both numerical approaches are compared in the frequency domain for validation purposes. Finally, the multibody model is simulated in the time domain to assess system performance in the presence of track irregularities and evaluate coupling effects between the degree-of-freedom.

References

1.
E. Webber
,
M.
,
2019
, “
Electric Highway
,”
Mech. Eng.
,
141
(
6
), pp.
32
37
. 10.1115/1.2019-JUN3
2.
Marelli
,
L.
,
Tsakalidis
,
A.
,
Gkoumas
,
K.
,
Haq
,
A.
,
Grosso
,
M.
, and
Pekar
,
F.
,
2017
,
Strategic transport research and innovation agenda (STRIA) roadmap factsheets
.
3.
Palacin
,
R.
,
2016
, “
Hyperloop, the Electrification of Mobility, and the Future of Rail Travel [viewpoint]
,”
IEEE Electrificat. Magaz.
,
4
(
3
), pp.
4
51
. 10.1109/MELE.2016.2584918
4.
Burkhard
,
N.
,
2014
, “
Why invent the Hyperloop?
http://large.stanford.edu/courses/2014/ph240/burkhard2/.
6.
Decker
,
K.
,
Chin
,
J.
,
Peng
,
A.
,
Summers
,
C.
,
Nguyen
,
G.
,
Oberlander
,
A.
,
Sakib
,
G.
,
Sharifrazi
,
N.
,
Heath
,
C.
,
Gray
,
J.
, and
Falck
,
R.
,
2017
, “
Conceptual Feasibility Study of the Hyperloop Vehicle for Next-Generation Transport
,”
AIAA SciTechForum
,
Grapevine, TX
,
Jan. 9–13
, p.
22
.
7.
Post
,
R. F.
, and
Ryutov
,
D.
,
1996
, “
The Inductrack concept: A New Approach to Magnetic Levitation
.”
Technical Report, UCRL-ID-124115, Lawrence Livermore National Lab., CA, May
.
8.
Dudnikov
,
E.
,
2017
, “
Advantages of a New Hyperloop Transport Technology
,”
2017 Tenth International Conference Management of Large-Scale System Development (MLSD)
,
Moscow, Russia
,
Oct. 2–4
,
IEEE Silver Spring, MD
, pp.
1
4
.
9.
Alexander
,
N. A.
, and
Kashani
,
M. M.
,
2018
, “
Exploring Bridge Dynamics for Ultra-High-Speed, Hyperloop, Trains
,”
Structures
,
14
, pp.
69
74
. 10.1016/j.istruc.2018.02.006
10.
Nick
,
N.
, and
Sato
,
Y.
,
2020
, “
Computational Fluid Dynamics Simulation of Hyperloop Pod Predicting Laminar-Tturbulent Transition
,”
Railway Eng. Sci.
,
28
(
1
), pp.
97
111
. 10.1007/s40534-020-00204-z
11.
Choi
,
S. Y.
,
Lee
,
C. Y.
,
Jo
,
J. M.
,
Choe
,
J. H.
,
Oh
,
Y. J.
,
Lee
,
K. S.
, and
Lim
,
J. Y.
,
2019
, “
Sub-Sonic Linear Synchronous Motors Using Superconducting Magnets for the Hyperloop
,”
Energies
,
12
(
24
), p.
4611
. 10.3390/en12244611
12.
Sun
,
L.
,
Taylor
,
J.
,
Guo
,
X.
,
Cheng
,
M.
, and
Emadi
,
A.
,
2020
, “
A Linear Position Measurement Scheme for Long-Distance and High-Speed Applications
,”
IEEE Trans. Industrial Electron.
, pp.
1
1
. 10.1109/TIE.2020.2984447
13.
Chaidez
,
E.
,
Bhattacharyya
,
S. P.
, and
Karpetis
,
A. N.
,
2019
, “
Levitation Methods for Use in the Hyperloop High-Speed Transportation System
,”
Energies
,
12
(
21
), p.
4190
. 10.3390/en12214190
14.
Lembke
,
T. A.
,
2005
, “
Design and Analysis of a Novel Low Loss Homopolar Electrodynamic Bearing
,”
Ph.D. thesis
,
School of Electrical Engineering
,
KTH, Stockholm, Sweden
.
15.
Tonoli
,
A.
,
Amati
,
N.
,
Impinna
,
F.
, and
Detoni
,
J. G.
,
2011
, “
A Solution for the Stabilization of Electrodynamic Bearings: Modeling and Experimental Validation
,”
ASME J. Vib. Acoust.
,
133
(
2
), p.
021004
. 10.1115/1.4002959
16.
Van Verdeghem
,
J.
,
Kluyskens
,
V.
, and
Dehez
,
B.
,
2019
, “
Stability and Performance Analysis of Electrodynamic Thrust Bearings
,”
Actuators
,
8
(
1
), p.
11
. 10.3390/act8010011
17.
Van Verdeghem
,
J.
,
Kluyskens
,
V.
, and
Dehez
,
B.
,
2017
, “
Five Degrees of Freedom Linear State-Space Representation of Electrodynamic Thrust Bearings
,”
J. Sound. Vib.
,
405
, pp.
48
67
. 10.1016/j.jsv.2017.05.042
18.
Filatov
,
A.
, and
Maslen
,
E.
,
2001
, “
Passive Magnetic Bearing for Flywheel Energy Storage Systems
,”
IEEE. Trans. Magn.
,
37
(
6
), pp.
3913
3924
. 10.1109/20.966127
19.
Post
,
R. F.
,
1998
, “
Inductrack Demonstration Model
.”
Tech. Rep. UCRL-ID-129664
,
Lawrence Livermore National Lab.
,
CA
, Feb.
20.
Post
,
R.
, and
Ryutov
,
D.
,
2000
, “
The Inductrack: a Simpler Approach to Magnetic Levitation
,”
IEEE Trans. Appl. Superconduct.
,
10
(
1
), pp.
901
904
. 10.1109/77.828377
21.
Gurol
,
H.
,
Baldi
,
R.
,
Jeter
,
P.
,
Kim
,
I.-K.
,
Bever
,
D.
, and
Atomics
,
G.
,
2005
, “
General Atomics Low Speed Maglev Technology Development Program (Supplemental# 3)
.”
Tech. rep., United States. Federal Transit Administration. Office of Technology
.
22.
Gurol
,
S.
, and
Baldi
,
B.
,
2004
, “
Overview of the General Atomics Urban Maglev Technology Development Program
,”
Proceedings of the 2004 IEEE/ASME Joint Rail Conference
,
Baltimore, MD
,
Apr. 6–8
, pp.
187
191
.
23.
Khan
,
M. M.
,
2019
, “
Development of Ryerson’s First Hyperloop Pod for Systems Using a Modular Approach
,”
ICASSE 2019, The International Conference on Aerospace System Science and Engineering
,
Toronto, Canada
,
July 30–Aug. 1
, p.
90
.
24.
Opgenoord
,
M. M. J.
,
Merian
,
C.
,
Mayo
,
J.
,
Kirschen
,
P.
,
O’Rourke
,
C.
,
Izatt
,
G.
et al
,
2017
, “
MIT Hyperloop Final Report.
” Technical Report,
Massachusetts Institute of Technology
,
Cambridge, MA
.
25.
Tsunashima
,
H.
, and
Abe
,
M.
,
1998
, “
Static and Dynamic Performance of Permanent Magnet Suspension for Maglev Transport Vehicle
,”
Vehicle Syst. Dyn.
,
29
(
2
), pp.
83
111
. 10.1080/00423119808969368
26.
Storset
,
O.
, and
Paden
,
B.
,
2002
, “
Infinite Dimensional Models for Perforated Track Electrodynamic Magnetic Levitation
,”
Proceedings of the 41st IEEE Conference on Decision and Control, 2002
,
Las Vegas, NV
,
Dec. 10–13
, Vol.
1
,
IEEE Silver Spring, MD
, pp.
842
847
.
27.
Pradhan
,
R.
, and
Katyayan
,
A.
,
2018
, “
Vehicle Dynamics of Permanent-magnet Levitation Based Hyperloop Capsules
,”
ASME 2018 Dynamic Systems and Control Conference
,
V002T22A004
.
28.
Íñiguez
,
J.
, and
Raposo
,
V.
,
2009
, “
Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array
,”
Eur. J. Phys.
,
30
(
2
), pp.
367
379
. 10.1088/0143-0807/30/2/016
29.
Indraneel
,
T.
,
Jayakumar
,
V.
,
Soni
,
A.
,
Shiyani
,
D. R.
,
Tyagi
,
K.
, and
Abdallah
,
S.
,
2019
, “
Levitation Array Testing for Hyperloop Pod Design
,”
AIAA Scitech 2019 Forum
, p.
0787
.
30.
Guo
,
Z.
,
Li
,
J.
, and
Zhou
,
D.
,
2019
, “
Study of a Null-Flux Coil Electrodynamic Suspension Structure for Evacuated Tube Transportation
,”
Symmetry
,
11
(
10
), p.
1239
. 10.3390/sym11101239
31.
Chen
,
Y.
,
Zhang
,
W.
,
Bird
,
J. Z.
,
Paul
,
S.
, and
Zhang
,
K.
,
2015
, “
A 3-D Analytic-Based Model of a Null-Flux Halbach Array Electrodynamic Suspension Device
,”
IEEE. Trans. Magn.
,
51
(
11
), pp.
1
5
. 10.1109/TMAG.2015.2444331
32.
Duan
,
J.
,
Xiao
,
S.
,
Zhang
,
K.
,
Rotaru
,
M.
, and
Sykulski
,
J. K.
,
2019
, “
Analysis and Optimization of Asymmetrical Double-Sided Electrodynamic Suspension Devices
,”
IEEE. Trans. Magn.
,
55
(
6
), pp.
1
5
. 10.1109/TMAG.2019.2894709
33.
Wang
,
R.
, and
Yang
,
B.
,
2019
, “
A Transient Model of Inductrack Dynamic Systems
,” Volume 8:
31st Conference on Mechanical Vibration and Noise
,
American Society of Mechanical Engineers
,
New York
,
V008T10A062
.
34.
Wang
,
R.
, and
Yang
,
B.
,
2020
, “
Transient Response of Inductrack Systems for Maglev Transport: Part I–A New Transient Model
,”
ASME J. Vib. Acoust.
,
142
(
3
), p.
031005
. 10.1115/1.4046131
35.
Wang
,
R.
, and
Yang
,
B.
,
2020
, “
Transient Response of Inductrack Systems for Maglev Transport: Part II–Solution and Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
142
(
3
), p.
031006
. 10.1115/1.4046132
36.
Galluzzi
,
R.
,
Circosta
,
S.
,
Amati
,
N.
,
Tonoli
,
A.
,
Bonfitto
,
A.
,
Lembke
,
T. A.
, and
Kertész
,
M.
,
2020
, “
A Multi-Domain Approach to the Stabilization of Electrodynamic Levitation Systems
,”
ASME J. Vib. Acoust.
,
142
(
6
), p.
061004
. 10.1115/1.4046952
37.
SpaceX
,
2016
.
SpaceX Hyperloop test-track specification
.
38.
Tudor
,
D.
, and
Paolone
,
M.
,
2019
, “
Optimal Design of the Propulsion System of a Hyperloop Capsule
,”
IEEE Trans. Trans. Electrification
,
5
(
4
), pp.
1406
1418
. 10.1109/TTE.2019.2952075
39.
Timperio
,
C.
,
2018
, “
Linear Induction Motor (LIM) for Hyperloop Pod Prototypes
,” p.
145
, ETH Zurich.
40.
Genta
,
G.
, and
Morello
,
L.
,
2009
,
The Automotive Chassis
(
Mechanical engineering series
),
Springer
,
Dordrecht
.
41.
British Standards Institution, and Organisation internationale de normalisation
,
1997
, “
Mechanical Vibration and Shock: Evaluation of Human Exposure to Whole-body Vibration. Part 1.
OCLC: 848057325
.
42.
Goodall
,
R.
,
1994
, “
Dynamic Characteristics in the Design of Maglev Suspensions
,”
Proc. Instit. Mech. Eng., Part F: J. Rail Rapid Transit
,
208
(
1
), pp.
33
41
. 10.1243/PIME_PROC_1994_208_231_02
43.
British Standards Institution, and Organisation internationale de normalisation
,
2001
, “
Mechanical Vibration and Shock: Evaluation of Human Exposure to Whole-Body Vibration
.
Part 4. OCLC: 1131752259
.
44.
Cleon
,
L.-M.
, and
Lauriks
,
G.
,
1996
, “
Evaluation of Passenger Comfort in Railway Vehicles
,”
J. Low Frequency Noise, Vib. Active Control
,
15
(
2
), pp.
53
69
. 10.1177/026309239601500201
45.
Zhao
,
C.
, and
Zhai
,
W.
,
2002
, “
Maglev Vehicle/Guideway Vertical Random Response and Ride Quality
,”
Vehicle Syst. Dyn.
,
38
(
3
), pp.
185
210
. 10.1076/vesd.38.3.185.8289
46.
Doll
,
D.
,
Blevins
,
R.
, and
Bhadra
,
D.
,
2002
, “
Ride Dynamics of General Atomics’ Urban Maglev.
The 17th Int. Conf. Magnetically Levitated Systems and Linear Drives
,
Lausanne, Switzerland
,
Sept. 3–5
.
You do not currently have access to this content.