Abstract

Rolling noise emitted by railway wheels is a problem that affects human health and limits the expansion of the railway network. It is caused by the wheel vibration due to the wheel-rail contact force, and it is important in almost all the vehicle velocity range. The minimization of noise radiation associated with changes on the wheel web is discussed in this work, focusing on potential shape modifications in existing wheels in the form of a perforation distribution over the web. Such a post-manufacturing technique is a cost-effective solution that can be performed in a relatively short term. The implemented objective function is directly related to the overall radiated sound power, which is minimized using a genetic algorithm-based optimizer. In the acoustic model, radiation efficiencies are approximated to unity, the accuracy of this assumption being also studied in the work. The results reflect that an optimized distribution of perforations on the web of a railway wheel can reduce the total sound power level, by about 5 dB(A) and 2 dB(A) for curved and straight web, respectively. The mitigation of the radiated sound power is due to the fact that certain wheel vibration modes are modified and shifted to other frequencies where they are less excited. Finally, the relevance of the cross-sectional curvature of the web is explored by studying two different web geometries, suggesting that it can strongly influence the noise mitigation effects of the perforation pattern.

References

1.
Clausen
,
U.
,
Doll
,
C.
,
Franklin
,
F.J.
,
Heinrichmeyer
,
H.
,
Kochsiek
,
J.
,
Rothengatter
,
W.
, and
Sieber
,
N.
,
2012
,
Reducing Railway Noise Pollution
,
European Parliament
,
Brussels, Belgium
.
2.
European Enviornment Agency (EEA)
, “
Enviornmental Indicator Report
.”
2017
. https://www.eea.europa.eu/airs/2017/environment-and-health/environmental-noise”. Accessed March 2, 2020.
3.
de Vos
,
P.
, “
International Union of Railways. Railway Noise in Europe. State of the Art Report
,”
Paris
2016
, https://uic.org/IMG/pdf/railway_noise_in_europe_2016_final.pdf. Accessed March 2, 2020.
4.
Guski
,
R.
,
Schreckenberg
,
D.
, and
Schuemer
,
R.
,
2017
, “
WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance
,”
Int. J. Environ. Res. Public Health
,
14
(
12
), p.
1539
. 10.3390/ijerph14121539
5.
Bunn
,
F.
, and
Zannin
,
P. H. T.
,
2016
, “
Assessment of Railway Noise in An Urban Setting
,”
Appl. Acoust.
,
104
, pp.
16
23
. 10.1016/j.apacoust.2015.10.025
6.
Colaço
,
A.
,
Costa
,
P. A.
,
Amado-Mendes
,
P.
, and
Godinho
,
L.
,
2017
, “
Prediction of Vibrations and Reradiated Noise Due to Railway Traffic: A Comprehensive Hybrid Model Based on a Finite Element Method and Method of Fundamental Solutions Approach
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061009
. 10.1115/1.4036929
7.
Thompson
,
D. J.
,
2010
,
Railway Noise and Vibration. Mechanisms, Modelling and Means of Control
, 1st ed.,
Elsevier
,
Oxford
.
8.
Jones
,
C. J. C.
, and
Thompson
,
D. J.
,
2000
, “
Rolling Noise Generated by Railway Wheels With Visco-Elastic Layers
,”
J. Sound Vib.
,
231
(
3
), pp.
779
790
. 10.1006/jsvi.1999.2562
9.
Cigada
,
A.
,
Manzoni
,
S.
, and
Vanali
,
M.
,
2008
, “
Vibro-Acoustic Characterization of Railway Wheels
,”
Appl. Acoust.
,
69
(
6
), pp.
530
545
. 10.1016/j.apacoust.2007.01.002
10.
Thompson
,
D. J.
, and
Gautier
,
P. E.
,
2006
, “
A Review of Research Into Wheel/Rail Rolling Noise Reduction
,”
Proc. Inst. Mech. Eng., Part F, J. Rail Rapid Transit
,
220
(
4
), pp.
385
408
. 10.1243/0954409JRRT79
11.
Putra
,
A.
, and
Thompson
,
D. J.
,
2007
, “
Sound Radiation From a Perforated Unbaffled Plate
,”
International Congress on Acoustics
,
Madrid
,
Sept. 3–7
, pp.
5736
5742
.
12.
Putra
,
A.
, and
Thompson
,
D. J.
,
2010
, “
Sound Radiation From Perforated Plates
,”
J. Sound Vib.
,
329
(
20
), pp.
4227
4250
. 10.1016/j.jsv.2010.04.020
13.
Gautier
,
P. E.
,
Vincent
,
N.
,
Thompson
,
D. J.
, and
Hölzl
,
G.
,
1993
, “
Railway Wheel Optimization
,”
Proceedings of Inter Noise
,
Leuven
,
Aug. 24–26
, pp.
1455
1458
.
14.
Thompson
,
D. J.
,
2002
, “
Brake and Wheel Design Can Cut Train Noise
,”
Railway Gaz.
,
2
(
10
), pp.
715
719
.
15.
Efthimeros
,
G. A.
,
Photeinos
,
D. I.
,
Diamantis
,
Z. G.
, and
Tsahalis
,
D. T.
,
2002
, “
Vibration/Noise Optimization of a FEM Railway Wheel Model
,”
Eng. Comput.
,
19
(
9
), pp.
922
931
. 10.1108/02644400210450350
16.
Nielsen
,
J. C. O.
, and
Fredö
,
C. R.
,
2006
, “
Multi-Disciplinary Optimization of Railway Wheels
,”
J. Sound Vib.
,
293
(
3-5
), pp.
510
521
. 10.1016/j.jsv.2005.08.063
17.
Hemsworth
,
B.
,
Gautier
,
P. E.
, and
Jones
,
R.
,
2000
, “
Silent Freight and Silent Track Projects
,”
Proceedings of the 29th International Congress and Exhibition on Noise Control Engineering
,
Nice
,
France, Aug. 27–30
, pp.
714
719
.
18.
Thompson
,
D. J.
,
2007
, “
But are the Trains Getting Any Quieter?
Proceedings of the Fourteenth International Congress on Sound and Vibration
,
Cairns
,
Australia, July 9–12
. https://www.acoustics.asn.au/conference_proceedings/ICSV14/papers/p816.pdf
19.
Tong
,
X.
,
Lin
,
J.
,
Zhang
,
G.
, and
Zhu
,
X.
,
2016
, “
Influence of Web Plate Holes on the Radiation Noise Characteristics of Wheels of the High Speed Train
,”
J. Vibroeng.
,
18
(
7
), pp.
4870
4884
. 10.21595/jve.2016.17594
20.
Gutiérrez-Gil
,
J.
,
García-Andrés
,
X.
,
Martínez-Casas
,
J.
,
Nadal
,
E.
, and
Denia
,
F. D.
,
2019
, “
Mitigation of Railway Wheel Rolling Noise by Using Advanced Optimization Techniques
,”
EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization
,
Lisbon
,
Sept. 17–19
, pp.
1141
1153
.
21.
Jones
,
C. J. C.
, and
Edwards
,
J. W.
,
1996
, “
Development of Wheels and Track Components for Reduced Rolling Noise From Freight Trains
,”
Proceedings of Internoise
,
Liverpool
,
Jul. 30–Aug. 2
.
22.
Janssens
,
M. H. A.
,
Thompson
,
D. J.
, and
de Beer
,
F. G.
,
2014
, “
TWINS Version 3.3 Track-Wheel Interaction Noise Software Theoretical Manual
”,
TNO Report
,
July
.
23.
Tran
,
L.-H.
,
Hoang
,
T.
,
Duhamel
,
D.
,
Foret
,
G.
,
Messad
,
S.
, and
Loaec
,
A.
,
2019
, “
A Fast Analytic Method to Calculate the Dynamic Response of Railways Sleepers
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011005
. 10.1115/1.4040392
24.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
, 13th ed.,
Addison Wesley
,
Reading
.
25.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2005
,
The Finite Element Method: Its Basis and Fundamentals
,
Butterworth-Heinemann
,
Oxford
.
26.
Ansys INC
,
2009
, “
Theory Reference for the Mechanical APDL and Mechanical Applications
”,
(T) 724-746-3304
,
Canonsburg
.
27.
Fuenmayor
,
F. J.
,
Denia
,
F. D.
,
Albelda
,
J.
, and
Giner
,
E.
,
2002
, “
H-Adaptative Refinement Strategy for Acoustic Problems With a Set of Natural Frequencies
,”
J. Sound Vib.
,
255
(
3
), pp.
457
479
. 10.1006/jsvi.2001.4165
28.
Thompson
,
D. J.
, and
Dittrich
,
M. G.
,
1991
, “
Wheel Response and Radiation – Laboratory Measurements of Five Types of Wheel and Comparisons With Theory
,”
ORE Technical Document DT248 (C163)
,
Utrecht
.
29.
EN 13979-1:2006+A2:2011
,
2011
,
Railway Applications – Wheelsets and Bogies – Monobloc Wheels – Technical Approval Procedure – Part 1: Forged and Rolled Wheels
,
AENOR
,
Madrid
.
30.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
, 1st ed,
Cambridge University Press
,
Cambridge
.
31.
ISO Standard 3095:2013
,
2014
,
Acoustics – Railway Applications – Measurement of Noise Emmited by Railbound Vehicles
,
International Organization for Standardization
,
Geneva
.
32.
Martínez-Casas
,
J.
,
Gialleonardo
,
E. D.
,
Bruni
,
S.
, and
Baeza
,
L.
,
2014
, “
A Comprehensive Model of the Railway Wheelset-Track Interaction in Curves
,”
J. Sound Vib.
,
333
(
18
), pp.
4152
4169
. 10.1016/j.jsv.2014.03.032
33.
Remington
,
P. J.
,
1976
, “
Wheel/Rail Noise, Part IV: Rolling Noise
,”
J. Sound Vib.
,
46
(
3
), pp.
419
436
. 10.1016/0022-460X(76)90864-6
34.
Remington
,
P.
, and
Webb
,
J.
,
1996
, “
Estimation of Wheel/Rail Interaction Forces in the Contact Area Due to Roughness
,”
J. Sound Vib.
,
193
(
1
), pp.
83
102
. 10.1006/jsvi.1996.0249
35.
Thompson
,
D. J.
,
2003
, “
The Influence of the Contact Zone on the Excitation of Wheel/Rail Noise
,”
J. Sound Vib.
,
267
(
3
), pp.
523
535
. 10.1016/S0022-460X(03)00712-0
36.
Thompson
,
D. J.
, and
Remington
,
P. J.
,
2000
, “
The Effects of Transverse Profile on the Excitation of Wheel/Rail Noise
,”
J. Sound Vib.
,
231
(
3
), pp.
537
548
. 10.1006/jsvi.1999.2543
37.
Estrada
,
H.
,
Uris
,
A.
, and
Meseguer
,
F.
,
2012
, “
Acoustic Radiation Efficiency of a Periodically Corrugated Rigid Piston
,”
Appl. Phys. Lett.
,
101
(
10
), p.
104103
. 10.1063/1.4748868
38.
Thompson
,
D. J.
, and
Jones
,
C. J. C.
,
2002
, “
Sound Radiation From a Vibrating Railway Wheel
,”
J. Sound Vib.
,
253
(
2
), pp.
401
419
. 10.1006/jsvi.2001.4061
39.
Remington
,
P. J.
,
1976
, “
Wheel/Rail Noise – Part 1: Characterization of the Wheel/Rail Dynamic System
,”
J. Sound Vib.
,
46
(
3
), pp.
359
379
. 10.1016/0022-460X(76)90861-0
40.
Remington
,
P. J.
,
1987
, “
Wheel/Rail Rolling Noise, 1: Theoretical Analysis
,”
J. Acoust. Soc. Am.
,
81
(
6
), pp.
1805
1823
. 10.1121/1.394746
41.
Chandler
,
D.
,
1962
, “
The Norm of the Schur Product Operation
,”
Numer. Math.
,
4
(
1
), pp.
343
344
. 10.1007/BF01386329
42.
IEC 61672-1:2013
,
2013
,
Electroacoustics – Sound level meters – Part 1: Specifications
.
You do not currently have access to this content.