Abstract

A semianalytical study of a uniform homogenous partially submerged square cantilever plate vibration is presented. The structure is assumed to be a Kirchhoff's plate, clamped on one edge and free on the other edges. The lengthwise section of the plate is a cantilever clamped-free (CF) beam, while the widthwise section is a free-free (FF) beam. The plate modeshape is a weighted superposition of the product of the beam modeshapes, with unknown weights. The CF beam has only flexural modes. The FF beam has two rigid-body modes, i.e., translational and rotational modes. Rayleigh–Ritz method (RRM) is used to set up the free vibration eigenvalue problem. The eigenvector gives the unknown weights. The modeshapes generated are further used in the boundary element method (BEM) to calculate the fluid inertia, which participates in the vibration and leads to a consistent drop in frequencies. The dependence of this reduction on the submergence level is studied for the first six frequencies of the plate. The frequencies are also experimentally generated by the impact hammer test, both in the dry state, and under three distinct levels of submergence: 25%, 50%, and 75% from the free edge opposite to the clamped edge. The frequencies and modeshapes are also verified through numerical analysis using the commercial code ansys 16.0. Conclusions are drawn regarding the influence of fluid inertia distribution on the final plate modeshape, leading to insights into sound structural designs.

References

1.
Ergin
,
A.
, and
Uğurlu
,
B.
,
2003
, “
Linear Vibration Analysis of Cantilever Plates Partially Submerged in Fluid
,”
J. Fluids Struct.
,
17
(
7
), pp.
927
939
.
2.
Ankit
,
A.
, and
Datta
,
N.
,
2015
, “
Free Transverse Vibration of Ocean Tower
,”
Ocean Eng.
,
107
, pp.
271
282
.
3.
Ankit
,
A.
,
Datta
,
N.
, and
Kannamwar
,
A. N.
,
2016
, “
Free Transverse Vibration of Mono-Piled Ocean Tower
,”
Ocean Eng.
,
116
, pp.
117
128
.
4.
Lamb
,
H.
,
1920
, “
On the Vibrations of an Elastic Plate in Contact With Water
,”
Proc. R. Soc. Lond. A
,
98
(
690
), pp.
205
216
.
5.
Amabili
,
M.
, and
Kwak
,
M. K.
,
1996
, “
Free Vibrations of Circular Plates Coupled With Liquids: Revising the Lamb Problem
,”
J. Fluids Struct.
,
10
(
7
), pp.
743
761
.
6.
Amabili
,
M.
, and
Kwak
,
M. K.
,
1999
, “
Vibration of Circular Plates on a Free Fluid Surface: Effect of Surface Waves
,”
J. Sound Vib.
,
226
(
3
), pp.
407
424
.
7.
Powell
,
J. H.
, and
Roberts
,
J. H. T.
,
1922
, “
On the Frequency of Vibration of Circular Diaphragms
,”
Proc. Phys. Soc. Lond.
,
35
(
1
), pp.
170
.
8.
Lindholm
,
U. S.
,
Kana
,
D. D.
,
Chu
,
W. H.
, and
Abramson
,
H. N.
,
1965
, “
Elastic Vibration Characteristics of Cantilever Plates in Water
,”
J. Ship Res.
,
9
, pp.
11
22
.
9.
Kito
,
F.
,
1944
, “
On the Added Mass of Flat Plates Vibrating in Water
,”
Zoxen Kyokai Japan
,
266
, pp.
1
10
.
10.
Meyerhoff
,
W. K.
,
1970
, “
Added Masses of Thin Rectangular Plates Calculated From Potential Theory
,”
J. Ship Res.
,
14
, pp.
100
111
.
11.
Chowdhury
,
P. C.
,
1972
, “
Fluid Finite Elements for Added-Mass Calculations
,”
Int. Shipbuild. Prog.
,
19
(
217
), pp.
302
309
.
12.
Marcus
,
M. S.
,
1978
, “
A Finite-Element Method Applied to the Vibration of Submerged Plates
,”
J. Ship Res.
22
(
2
), pp.
94
99
.
13.
Muthuveerappan
,
G.
,
Ganesan
,
N.
, and
Veluswami
,
M. A.
,
1978
, “
Vibration of Square Cantilever Plate Immersed in Water
,”
J. Sound Vib.
,
61
, pp.
467
470
.
14.
Muthuveerappan
,
G.
,
Ganesan
,
N.
, and
Veluswami
,
M. A.
,
1980
, “
Influence of Fluid Added Mass on the Vibration Characteristics of Plates Under Various Boundary Conditions
,”
J. Sound Vib.
,
69
, pp.
612
615
.
15.
Rao
,
P. S.
,
Sinha
,
G.
, and
Mukhopadhyay
,
M.
,
1993
, “
Vibration of Submerged Stiffened Plates by the Finite Element Method
,”
Int. Shipbuild. Prog.
,
40
, pp.
261
292
.
16.
Bishop
,
R. E. D.
, and
Price
,
W. G.
,
1976
, “
On the Relationship Between “dry Modes” and “Wet Modes” in the Theory of Ship Response
,”
J. Sound Vib.
,
45
(
2
), pp.
157
164
.
17.
Volcy
,
G. C.
,
Morel
,
P.
,
Bureau
,
M.
, and
Tanida
,
K.
,
1979
, “
September. Some Studies and Researches Related to the Hydroelasticity of Steel Work
,”
Proceedings of the 122nd EUROMECH Colloquium on Numerical Analysis of the Dynamics of Ship Structures
,
Ecole Polytechnique Paris
, 1979, pp.
403
436
.
18.
Fu
,
Y.
, and
Price
,
W. G.
,
1987
, “
Interactions Between a Partially or Totally Immersed Vibrating Cantilever Plate and the Surrounding Fluid
,”
J. Sound Vib.
,
118
(
3
), pp.
495
513
.
19.
Kwak
,
M. K.
, and
Han
,
S. B.
,
2000
, “
Effect of Fluid Depth on the Hydroelastic Vibration of Free-Edge Circular Plate
,”
J. Sound Vib.
,
230
(
1
), pp.
171
185
.
20.
Meylan
,
M. H.
,
1997
, “
The Forced Vibration of a Thin Plate Floating on an Infinite Liquid
,”
J. Sound Vib.
,
205
(
5
), pp.
581
591
.
21.
Cheung
,
Y. K.
, and
Zhou
,
D.
,
2000
, “
Coupled Vibratory Characteristics of a Rectangular Container Bottom Plate
,”
J. Fluids Struct.
,
14
(
3
), pp.
339
357
.
22.
Liang
,
C. C.
,
Liao
,
C. C.
,
Tai
,
Y. S.
, and
Lai
,
W. H.
,
2001
, “
The Free Vibration Analysis of Submerged Cantilever Plates
,”
Ocean Eng.
,
28
(
9
), pp.
1225
1245
.
23.
Haddara
,
M. R.
, and
Cao
,
S.
,
1996
, “
A Study of the Dynamic Response of Submerged Rectangular Flat Plates
,”
Mar. Struct.
,
9
(
10
), pp.
913
933
.
24.
Kerboua
,
Y.
,
Lakis
,
A. A.
,
Thomas
,
M.
, and
Marcouiller
,
L.
,
2008
, “
Vibration Analysis of Rectangular Plates Coupled With Fluid
,”
Appl. Math. Modell.
,
32
(
12
), pp.
2570
2586
.
25.
Kwak
,
M. K.
, and
Yang
,
D. H.
,
2013
, “
Free Vibration Analysis of Cantilever Plate Partially Submerged Into a Fluid
,”
J. Fluids Struct.
,
40
, pp.
25
41
.
26.
Kwak
,
M. K.
, and
Yang
,
D. H.
,
2015
, “
Dynamic Modelling and Active Vibration Control of a Submerged Rectangular Plate Equipped With Piezoelectric Sensors and Actuators
,”
J. Fluids Struct.
,
54
, pp.
848
867
.
27.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
,
Valero
,
C.
, and
Egusquiza
,
M.
,
2017
, “
Experimental Study of a Vibrating Disk Submerged in a Fluid-Filled Tank and Confined With a Nonrigid Cover
,”
ASME J. Vib. Acoust.
,
139
(
2
), pp.
021005
.
28.
Datta
,
N.
, and
Verma
,
Y.
,
2018
, “
Analytical Scrutiny and Prominence of Beam-Wise Rigid-Body Modes in Vibration of Plates With Translational Edge Restraints
,”
Int. J. Mech. Sci.
,
135
, pp.
124
132
.
29.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamic
,
MIT Press
,
London
.
30.
Datta
,
N.
, and
Troesch
,
A. W.
,
2012
, “
Dynamic Response of Kirchhoff’s Plates to the Transient Hydrodynamic Impact Loads
,”
J. Mar. Syst. Ocean Technol.
,
7
(
2
), pp.
79
94
.
31.
Datta
,
N.
,
Kannamwar
,
A. N.
, and
Verma
,
Y.
,
2017
, “
Wet Vibration of Low-Aspect-Ratio Aerofoil Wing: Semi-Analytical and Numerical Approach With Experimental Investigation
,”
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June
.
32.
Kwak
,
M. K.
,
1996
, “
Hydroelastic Vibration of Rectangular Plates
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
110
115
.
33.
Leissa
,
A. W.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
(
3
), pp.
257
293
.
34.
Wang
,
X.
, and
Yuan
,
Z.
,
2017
, “
Discrete Singular Convolution and Taylor Series Expansion Method for Free Vibration Analysis of Beams and Rectangular Plates With Free Boundaries
,”
Int. J. Mech. Sci.
,
122
, pp.
184
191
.
You do not currently have access to this content.