In this paper, we propose a new method for simulating three-dimensional (3D) ultrasonic wave propagation using P-Spice like simulator. We use a one-dimensional transmission line model to implement the diffraction losses. In order to simulate the beam pattern considering axial and radial orientations, we calculate the diffraction losses in 3D space. First, we express the radiated field using a set of Gaussian beams. Calculating the average pressure over the receiver surface allows us to determine the diffraction losses. These losses are then incorporated into the P-Spice model via the G parameter which is axial and radial orientations dependent. Comparison between P-Spice simulation and analytical model results shows good agreements.
Issue Section:
Research Papers
References
1.
Mason
, W. P.
, 1948
, Electromechanical Transducers and Wave Filters
, D. Van Nostrand
, New York.2.
Redwood
, M.
, 1961
, “Transient Performance of a Piezoelectric Transducer
,” J. Acoust. Soc. Am.
, 33
(4
), pp. 527
–536
.3.
Krimholtz
, R.
, Leedom
, D. A.
, and Matthaei
, G. L.
, 1970
, “New Equivalent Circuits for Elementary Piezoelectric Transducers
,” Electron. Lett.
, 6
(13
), pp. 398
–399
.4.
Leach
, W. M.
, Jr., 1994
, “Controlled-Source Analogous Circuits and SPICE Models for Piezoelectric Transducers
,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control
, 41
(1
), pp. 60
–66
.5.
Ramos
, A.
, Ruiz
, A.
, San Emeterio
, J. L.
, and Sanz
, P. T.
, 2006
, “PSpice Circuital Modelling of Ultrasonic Imaging Transceivers Including Frequency-Dependent Acoustic Losses and Signal Distortions in Electronic Stages
,” Ultrasonics
, 44
(Suppl.), pp. e995
–e1000
.6.
Puttmer
, A.
, Hauptmann
, P.
, Lucklum
, R.
, Krause
, O.
, and Henning
, B.
, 1997
, “SPICE Model for Lossy Piezoceramic Transducers
,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control
, 44
(1
), pp. 60
–66
.7.
van Deventer
, J.
, Lofqvist
, T.
, and Delsing
, J.
, 2000
, “PSpice Simulation of Ultrasonic Systems
,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control
, 47
(4
), pp. 1014
–1024
.8.
Johansson
, J.
, and Martinsson
, P. E.
, 2001
, “Incorporation of Diffraction Effects in Simulations of Ultrasonic Systems Using PSpice Models
,” IEEE Ultrasonics Symposium
, Atlanta, GA, Oct. 7–10, Vol. 1
, pp. 405
–410
.9.
Johansson
, J.
, Martinsson
, P. E.
, and Delsing
, J.
, 2007
, “Simulation of Absolute Amplitudes of Ultrasound Signals Using Equivalent Circuits
,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control
, 54
(10
), pp. 1977
–1983
.10.
Aouzale
, N.
, Chitnalah
, A.
, Jakjoud
, H.
, and Kourtiche
, D.
, 2008
, “PSpice Modelling of an Ultrasonic Setup for Materials Characterization
,” Ferroelectrics
, 372
(1
), pp. 107
–114
.11.
Aouzale
, N.
, Chitnalah
, A.
, and Jakjoud
, H.
, 2009
, “Experimental Validation of SPICE Modeling Diffraction Effects in a Pulse–Echo Ultrasonic System
,” IEEE Trans. Circuits Syst. II: Express Briefs
, 56
(12
), pp. 911
–915
.12.
Aouzale
, N.
, Chitnalah
, A.
, and Jakjoud
, H.
, 2012
, “SPICE Modeling Nonlinearity Effects on Ultrasonic Waves
,” ASME J. Vib. Acoust.
, 134
(5
), p. 051003
.13.
Labat
, V.
, Remenieras
, J. P.
, Matar
, O. B.
, Ouahabi
, A.
, and Patat
, F.
, 2000
, “Harmonic Propagation of Finite Amplitude Sound Beams: Experimental Determination of the Nonlinearity Parameter B/A
,” Ultrasonics
, 38
(1–8), pp. 292
–296
.14.
Hamilton
, M. F.
, and Blackstock
, D. T.
, 1998
, Nonlinear Acoustics
, Vol. 427
, Academic Press
, San Diego, CA
.15.
Wen
, J. J.
, and Breazeale
, M. A.
, 1988
, “A Diffraction Beam Field Expressed as the Superposition of Gaussian Beams
,” J. Acoust. Soc. Am.
, 83
(5
), pp. 1752
–1756
.16.
Jakjoud
, H.
, Chitnalah
, A.
, and Aouzale
, N.
, 2014
, “Transducer Profile Effect on the Second Harmonic Level
,” Acoust. Phys.
, 60
(3
), pp. 261
–268
.17.
Chitnalah
, A.
, Kourtiche
, D.
, Jakjoud
, H.
, and Nadi
, M.
, 2007
, “Pulse Echo Method for Nonlinear Ultrasound Parameter Measurement
,” Electron. J. Tech. Acoust.
, 13
, pp. 1
–8
.18.
Oliveira
, E. G.
, Machado
, J. C.
, and Costa-Felix
, R. P. B.
, 2015
, “Hydrophone's Sensitivity Calibration Based on Its Complex Transfer Function
,” J. Phys. Conf. Ser.
, 575
(1
), pp. 1
–5
.Copyright © 2016 by ASME
You do not currently have access to this content.