In this paper, we propose a new method for simulating three-dimensional (3D) ultrasonic wave propagation using P-Spice like simulator. We use a one-dimensional transmission line model to implement the diffraction losses. In order to simulate the beam pattern considering axial and radial orientations, we calculate the diffraction losses in 3D space. First, we express the radiated field using a set of Gaussian beams. Calculating the average pressure over the receiver surface allows us to determine the diffraction losses. These losses are then incorporated into the P-Spice model via the G parameter which is axial and radial orientations dependent. Comparison between P-Spice simulation and analytical model results shows good agreements.

References

1.
Mason
,
W. P.
,
1948
,
Electromechanical Transducers and Wave Filters
,
D. Van Nostrand
, New York.
2.
Redwood
,
M.
,
1961
, “
Transient Performance of a Piezoelectric Transducer
,”
J. Acoust. Soc. Am.
,
33
(
4
), pp.
527
536
.
3.
Krimholtz
,
R.
,
Leedom
,
D. A.
, and
Matthaei
,
G. L.
,
1970
, “
New Equivalent Circuits for Elementary Piezoelectric Transducers
,”
Electron. Lett.
,
6
(
13
), pp.
398
399
.
4.
Leach
,
W. M.
, Jr.
,
1994
, “
Controlled-Source Analogous Circuits and SPICE Models for Piezoelectric Transducers
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
41
(
1
), pp.
60
66
.
5.
Ramos
,
A.
,
Ruiz
,
A.
,
San Emeterio
,
J. L.
, and
Sanz
,
P. T.
,
2006
, “
PSpice Circuital Modelling of Ultrasonic Imaging Transceivers Including Frequency-Dependent Acoustic Losses and Signal Distortions in Electronic Stages
,”
Ultrasonics
,
44
(Suppl.), pp.
e995
e1000
.
6.
Puttmer
,
A.
,
Hauptmann
,
P.
,
Lucklum
,
R.
,
Krause
,
O.
, and
Henning
,
B.
,
1997
, “
SPICE Model for Lossy Piezoceramic Transducers
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
44
(
1
), pp.
60
66
.
7.
van Deventer
,
J.
,
Lofqvist
,
T.
, and
Delsing
,
J.
,
2000
, “
PSpice Simulation of Ultrasonic Systems
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
47
(
4
), pp.
1014
1024
.
8.
Johansson
,
J.
, and
Martinsson
,
P. E.
,
2001
, “
Incorporation of Diffraction Effects in Simulations of Ultrasonic Systems Using PSpice Models
,”
IEEE Ultrasonics Symposium
, Atlanta, GA, Oct. 7–10, Vol.
1
, pp.
405
410
.
9.
Johansson
,
J.
,
Martinsson
,
P. E.
, and
Delsing
,
J.
,
2007
, “
Simulation of Absolute Amplitudes of Ultrasound Signals Using Equivalent Circuits
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
54
(
10
), pp.
1977
1983
.
10.
Aouzale
,
N.
,
Chitnalah
,
A.
,
Jakjoud
,
H.
, and
Kourtiche
,
D.
,
2008
, “
PSpice Modelling of an Ultrasonic Setup for Materials Characterization
,”
Ferroelectrics
,
372
(
1
), pp.
107
114
.
11.
Aouzale
,
N.
,
Chitnalah
,
A.
, and
Jakjoud
,
H.
,
2009
, “
Experimental Validation of SPICE Modeling Diffraction Effects in a Pulse–Echo Ultrasonic System
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
56
(
12
), pp.
911
915
.
12.
Aouzale
,
N.
,
Chitnalah
,
A.
, and
Jakjoud
,
H.
,
2012
, “
SPICE Modeling Nonlinearity Effects on Ultrasonic Waves
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051003
.
13.
Labat
,
V.
,
Remenieras
,
J. P.
,
Matar
,
O. B.
,
Ouahabi
,
A.
, and
Patat
,
F.
,
2000
, “
Harmonic Propagation of Finite Amplitude Sound Beams: Experimental Determination of the Nonlinearity Parameter B/A
,”
Ultrasonics
,
38
(1–8), pp.
292
296
.
14.
Hamilton
,
M. F.
, and
Blackstock
,
D. T.
,
1998
,
Nonlinear Acoustics
, Vol.
427
,
Academic Press
,
San Diego, CA
.
15.
Wen
,
J. J.
, and
Breazeale
,
M. A.
,
1988
, “
A Diffraction Beam Field Expressed as the Superposition of Gaussian Beams
,”
J. Acoust. Soc. Am.
,
83
(
5
), pp.
1752
1756
.
16.
Jakjoud
,
H.
,
Chitnalah
,
A.
, and
Aouzale
,
N.
,
2014
, “
Transducer Profile Effect on the Second Harmonic Level
,”
Acoust. Phys.
,
60
(
3
), pp.
261
268
.
17.
Chitnalah
,
A.
,
Kourtiche
,
D.
,
Jakjoud
,
H.
, and
Nadi
,
M.
,
2007
, “
Pulse Echo Method for Nonlinear Ultrasound Parameter Measurement
,”
Electron. J. Tech. Acoust.
,
13
, pp.
1
8
.
18.
Oliveira
,
E. G.
,
Machado
,
J. C.
, and
Costa-Felix
,
R. P. B.
,
2015
, “
Hydrophone's Sensitivity Calibration Based on Its Complex Transfer Function
,”
J. Phys. Conf. Ser.
,
575
(
1
), pp.
1
5
.
You do not currently have access to this content.