This paper proposes a systematic methodology for predicting and optimizing the performance of an energy regenerative suspension system to efficiently capture the vibratory energy induced by the road irregularities. The method provides a graphical design guideline for the selection of stiffness and damping coefficients aimed at either best ride comfort or maximum energy harvesting. To achieve energy regeneration capability, a low-power electronic circuit capable of providing a variable load resistance is developed and fabricated. The circuit is controlled to provide an adjustable damping coefficient in the real-time. A test-bed is utilized to experimentally verify the proposed techniques. The results indicate that the analytical and simulation results concerning the optimal values for dynamic control and power regeneration match the experimental results.

References

1.
Hsu
,
P.
,
1996
, “
Power Recovery Property of Electrical Active Suspension Systems
,”
IEEE 31st Intersociety Energy Conversion Engineering Conference
(
IECEC 96
), Washington, DC, Aug. 11–16, pp.
1899
1904
.10.1109/IECEC.1996.553393
2.
Zuo
,
L.
, and
Zhang
,
P. S.
,
2013
, “
Energy Harvesting, Ride Comfort, and Road Handling of Regenerative Vehicle Suspensions
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011002
.10.1115/1.4007562
3.
Suda
,
Y.
,
Shiiba
,
T.
,
Hio
,
K.
,
Kawamoto
,
Y.
,
Kondo
,
T.
, and
Yamagata
,
H.
,
2004
, “
Study on Electromagnetic Damper for Automobiles With Nonlinear Damping Force Characteristics: (Road Test and Theoretical Analysis)
,”
Veh. Syst. Dyn.
,
41
(S), pp.
637
646
.
4.
David
,
S.
, and
Bobrovsky
,
B.
,
2011
, “
Actively Controlled Vehicle Suspension With Energy Regeneration Capabilities
,”
Veh. Syst. Dyn.
,
49
(
6
), pp.
833
854
.10.1080/00423114.2010.488295
5.
Ebrahimi
,
B.
,
Bolandhemmat
,
H.
,
Khamesee
,
M.
, and
Golnaraghi
,
M. F.
,
2011
, “
A Hybrid Electromagnetic Shock Absorber for Active Vehicle Suspension
,”
Veh. Syst. Dyn.
,
49
(
1
), pp.
311
332
.10.1080/00423111003602400
6.
Ebrahimi
,
B.
,
Khamesee
,
M. B.
, and
Golnaraghi
,
F.
,
2009
, “
Eddy Current Damper Feasibility in Automobile Suspension: Modeling, Simulation and Testing
,”
Smart Mater. Struct.
,
18
(
1
), p.
015017
.10.1088/0964-1726/18/1/015017
7.
Li
,
Z.
,
Zuo
,
L.
,
Luhrs
,
G.
,
Lin
,
L.
, and
Qin
,
Y.
,
2013
, “
Electromagnetic Energy-Harvesting Shock Absorbers: Design, Modeling, and Road Tests
,”
IEEE Trans. Veh. Technol.
,
62
(
3
), pp.
1065
1074
.10.1109/TVT.2012.2229308
8.
Sabzehgar
,
R.
,
Maravandi
,
A.
, and
Moallem
,
M.
,
2014
, “
Energy Regenerative Suspension Using an Algebraic Screw Linkage Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
19
(
4
), pp.
1251
1259
.10.1109/TMECH.2013.2277854
9.
Wang
,
Z.
,
Chen
,
Z.
, and
Spencer
,
B. F.
, Jr.
,
2009
, “
Self-Powered and Sensing Control System Based on MR Damper: Presentation and Application
,”
Proc. SPIE
,
7292
, p.
729240
.10.1117/12.815395
10.
Choi
,
Y. T.
, and
Wereley
,
N. M.
,
2009
, “
Self-Powered Magnetorheological Dampers
,”
ASME J. Vib. Acoust.
,
131
(
4
), p.
044501
.10.1115/1.3142882
11.
Kim
,
I. H.
,
Jung
,
H. J.
, and
Koo
,
J. H.
,
2010
, “
Experimental Evaluation of a Self-Powered Smart Damping System in Reducing Vibrations of a Full-Scale Stay Cable
,”
Smart Mater. Struct.
,
19
(
11
), p.
115027
.10.1088/0964-1726/19/11/115027
12.
Sapiński
,
B.
,
2010
, “
Vibration Power Generator for a Linear MR Damper
,”
Smart Mater. Struct.
,
19
(
10
), p.
105012
.10.1088/0964-1726/19/10/105012
13.
Sapiński
,
B.
,
2011
, “
Experimental Study of a Self-Powered and Sensing MR-Damper-Based Vibration Control System
,”
Smart Mater. Struct.
,
20
(
10
), p.
105007
.10.1088/0964-1726/20/10/105007
14.
Chen
,
C.
, and
Liao
,
W. H.
,
2012
, “
A Self-Sensing Magnetorheological Damper With Power Generation
,”
Smart Mater. Struct.
,
21
(
2
), p.
025014
.10.1088/0964-1726/21/2/025014
15.
Gobbi
,
M.
,
Haque
,
I.
,
Papalambros
,
P. Y.
, and
Mastinu
,
G.
,
2005
, “
Optimization and Integration of Ground Vehicle Systems
,”
Veh. Syst. Dyn.
,
43
(
6–7
), pp.
437
453
.10.1080/00423110500158841
16.
Tamboli
,
J. A.
, and
Joshi
,
S. G.
,
1999
, “
Optimum Design of a Passive Suspension System of a Vehicle Subjected to Actual Random Road Excitations
,”
J. Sound Vib.
,
219
(
2
), pp.
193
205
.10.1006/jsvi.1998.1882
17.
Gobbi
,
M.
, and
Mastinu
,
G.
,
2001
, “
Analytical Description and Optimization of the Dynamic Behaviour of Passively Suspended Road Vehicles
,”
J. Sound Vib.
,
245
(
3
), pp.
457
481
.10.1006/jsvi.2001.3591
18.
Verros
,
G.
,
Natsiavas
,
S.
, and
Papadimitriou
,
C.
,
2005
, “
Design Optimization of Quarter-Car Models With Passive and Semi-Active Suspensions Under Random Road Excitation
,”
J. Vib. Control
,
11
(
5
), pp.
581
606
.10.1177/1077546305052315
19.
Georgiou
,
G.
,
Verros
,
G.
, and
Natsiavas
,
S.
,
2007
, “
Multi-Objective Optimization of Quarter-Car Models With a Passive or Semi-Active Suspension System
,”
Veh. Syst. Dyn.
,
45
(
1
), pp.
77
92
.10.1080/00423110600812925
20.
Jazar
,
G. N.
,
Narimani
,
A.
,
Golnaraghi
,
M. F.
, and
Swanson
,
D. A.
,
2003
, “
Practical Frequency and Time Optimal Design of Passive Linear Vibration
,”
Veh. Syst. Dyn.
,
39
(
6
), pp.
437
466
.10.1076/vesd.39.6.437.14595
21.
Jazar
,
G. N.
,
Alkhatib
,
R.
, and
Golnaraghi
,
M. F.
,
2006
, “
Root Mean Square Optimization Criterion for Vibration Behaviour of Linear Quarter Car Using Analytical Methods
,”
Veh. Syst. Dyn.
,
44
(
6
), pp.
477
512
.10.1080/00423110600621714
22.
Arzanpour
,
S.
,
Eslaminasab
,
N.
,
Shubert
,
B.
,
Narimani
,
A.
, and
Golnaraghi
,
M. F.
,
2006
, “
A Novel Technique for Frequency and Time Optimization of Automotive Engine Mount Parameters
,”
ASME
Paper No. IMECE2006-14911. 10.1115/IMECE2006-14911
23.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(
1–2
), pp.
409
425
.10.1016/j.jsv.2005.10.003
24.
Dahono
,
P. A.
,
2009
, “
New Hysteresis Current Controller for Single-Phase Full-Bridge Inverters
,”
Power Electron. IET
,
2
(
5
), pp.
585
594
.10.1049/iet-pel.2008.0143
25.
Dahono
,
P. A.
,
2004
, “
New Current Controllers for Single-Phase Full-Bridge Inverters
,”
International Conference on Power System Technology
(
PowerCon 2004
), Singapore, Nov. 21–24, pp.
1757
1762
.10.1109/ICPST.2004.1460287
You do not currently have access to this content.