Micro- and nanomechanical resonators operating in liquid have been used to measure the change in the mass of either cells or functionalized surfaces attached to the resonator. As the system accretes mass, the natural frequency of the system changes, which can be measured experimentally. The current work extends methods previously developed for simulation of an atomic force microscope operating in liquid to study this phenomenon. A silicon cantilever with a 10 micron width, an 800 nm thickness, and a length of 30 microns was selected as a baseline configuration. The change in resonant frequency as the system accretes mass was determined through simulation. The results show that the change in natural frequency as mass accretes on the resonator is predictable through simulation. The geometry and material of the cantilever were varied to optimize the system. The results show that shorter cantilevers yield large gains in system performance. The width does not have a large impact on the system performance. Selecting the optimal thickness requires balancing the increase in overall system mass with the improvement in frequency response as the structure becomes thicker. Because there is no limit to the maximum system stiffness, the optimal materials will be those with higher elastic moduli. Based on these criteria, the optimum resonator for mass accretion measurements will be significantly different than an optimized atomic-force microscopy (AFM) cantilever.

References

1.
Zhong
,
Q.
,
Innisss
,
D.
,
Kjoller
,
K.
, and
Elings
,
V. B.
,
1993
, “
Fractured Polymer Silica Fiber Surface Studied by Tapping Mode Atomic-Force Microscopy
,”
Surf. Sci. Lett.
,
290
(
1–2
), pp.
L688
L692
.10.1016/0039-6028(93)90582-5
2.
Ashhab
,
M.
,
Salapaka
,
M. V.
,
Dahleh
,
M.
, and
Mezic
,
I.
,
1999
, “
Dynamical Analysis and Control of Microcantilevers
,”
Automatica
,
35
(
2
), pp.
1663
1670
.10.1016/S0005-1098(99)00077-1
3.
Fung
,
R.-F.
, and
Huang
,
S.-C.
,
2001
, “
Dynamic Modeling and Vibration Analysis of the Atomic Force Microscope
,”
ASME J. Vib. Acoust.
,
123
(
4
), pp.
502
509
.10.1115/1.1389084
4.
Hansma
,
P. K.
,
Cleveland
,
J. P.
,
Radmacher
,
M.
,
Walters
,
D. A.
,
Hillner
,
P. E.
,
Bezanilla
,
M.
,
Fritz
,
M.
,
Vie
,
D.
,
Hansma
,
H. G.
,
Prater
,
C. B.
,
Massie
,
J.
,
Fukunaga
,
L.
,
Gurley
,
J.
, and
Elings
,
V.
,
1994
, “
Tapping Mode Atomic Force Microscopy in Liquids
,”
Appl. Phys. Lett.
,
4
(
13
), pp.
1738
1740
.10.1063/1.111795
5.
Tamayo
,
J.
,
Humphris
,
A. D. L.
,
Owen
,
R. J.
, and
Miles
,
M. J.
,
2001
, “
High-Q Dynamic Force Microscopy in Liquid and Its Application to Living Cells
,”
Biophys. J.
,
81
(
1
), pp.
526
537
.10.1016/S0006-3495(01)75719-0
6.
Gaudó
,
M. V.
,
Abadal
,
G.
,
Verd
,
J.
,
Teva
,
J.
,
Perez-Murano
,
F.
,
Costa
,
E. F.
,
Montserrat
,
J.
,
Uranga
,
A.
,
Esteve
,
J.
, and
Barniol
,
N.
,
2007
, “
Time-Resolved Evaporation Rate of Attoliter Glycerine Drops Using On-Chip CMOS Mass Sensors Based on Resonant Silicon Micro-Cantilevers
,”
IEEE Trans. Nanotechnol.
,
6
(
5
), pp.
509
512
.10.1109/TNANO.2007.901477
7.
Park
,
K.
,
Jang
,
J.
,
Irimia
,
D.
,
Sturgis
,
J.
, and
Lee
,
J.
,
2008
, “‘
Living Cantilever Arrays for Characterization of Mass of Single Live Cells in Fluids
,”
Lab on Chip
,
8
(
7
), pp.
1034
1041
.10.1039/b803601b
8.
Park
,
K.
,
Millet
,
L. J.
,
Kim
,
N.
,
Li
,
H.
,
Jin
,
X.
,
Popescu
,
G.
,
Aluru
,
N. R.
,
Hsia
,
K. J.
, and
Bashir
,
R.
,
2010
, “
Measurement of Adherent Cell Mass and Growth
,”
Proc. Natl. Acad. Sci.
,
107
(
48
), pp.
20691
20696
.10.1073/pnas.1011365107
9.
Kim
,
S.
,
Yi
,
D.
,
Passian
,
A.
, and
Thundat
,
T.
,
2010
, “
Observation of an Anomalous Mass Effect in Microcantilever-Based Biosensing Caused by Adsorbed DNA
,”
Appl. Phys. Lett.
,
96
(
15
), p.
153703
.10.1063/1.3399234
10.
Ekinci
,
K. L.
,
Huang
,
X. M. H.
, and
Roukes
,
M. L.
,
2004
, “
Ultrasensitive Nanoelectromechanical Mass Detection
,”
Appl. Phys. Lett.
,
84
(
22
), pp.
4469
4471
.10.1063/1.1755417
11.
Lavrik
,
N. V.
,
Sepaniak
,
M. J.
, and
Datskos
,
P. G.
,
2004
, “
Cantilever Transducers as a Platform for Chemical and Biological Sensors
,”
Rev. Sci. Instrum.
,
75
(
7
), pp.
2229
2253
.10.1063/1.1763252
12.
Blom
,
F. R.
,
Bouwstra
,
S.
,
Elwenspoek
,
M.
, and
Fluitman
,
J. H. J.
,
1992
, “
Dependence of the Quality Factor of Micromachined Silicon Beam Resonators on Pressure and Geometry
,”
J. Vac. Sci. Technol. B
,
10
(
1
), pp.
19
26
.10.1116/1.586300
13.
Sader
,
J. E.
,
1998
, “
Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
,
84
(
1
), pp.
64
76
.10.1063/1.368002
14.
Bhiladvala
,
R. B.
, and
Wang
,
Z. J.
,
2004
, “
Effect of Fluids on the Q Factor and Resonance Frequency of Oscillating Micrometer and Nanometer Scale Beams
,”
Phys. Rev. E
,
69(3)
, p.
036307
.10.1103/PhysRevE.69.036307
15.
Martin
,
M. J.
, and
Houston
,
B. H.
,
2008
, “
Computation of Damping for Vibrating Micro-Machined Cantilevers in the Slip Flow Regime
,”
AIAA
Paper No. 2008-0690.10.2514/6.2008-690
16.
Martin
,
M. J.
,
Fathy
,
H. K.
, and
Houston
,
B. H.
,
2008
, “
Dynamic Simulation of Atomic Force Microscope Cantilevers Oscillating in Liquid
,”
J. Appl. Phys.
,
104
(
4
), p.
044316
.10.1063/1.2970154
17.
Martin
,
M. J.
, and
Houston
,
B. H.
,
2008
, “
Frequency Response of Nanoelectromechanical Cantilevers Operating in Fluid
,” 8th IEEE Conference on Nanotechnology (
NANO'08
), Arlington, TX, August 18–21.10.1109/NANO.2008.97
18.
Basak
,
S.
,
Raman
,
A.
, and
Garimella
,
S. V.
,
2006
, “
Hydrodynamic Loading of Microcantilevers Operating in Viscous Fluids
,”
J. Appl. Phys.
,
99
(
11
), p.
114906
.10.1063/1.2202232
19.
Weaver
,
W.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1990
,
Vibration Problems in Engineering
, 5th ed.,
Wiley
,
New York
.
20.
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress and Strain
,
McGraw-Hill
,
New York
.
21.
Thompson
,
W. T.
,
1993
,
Theory of Vibrations with Applications
,
Prentice-Hall, Englewood Cliffs
,
NJ
.
22.
Fletcher
,
C. A. J.
,
1991
,
Computational Techniques for Fluid Dynamics, Vol. II, Specific Techniques for Different Flow Categories
, 2nd ed.,
Springer-Verlag
,
New York.
23.
Peterson
,
K. E.
,
1982
, “
Silicon as a Mechanical Material
,”
Proc. IEEE
,
70
(
5
), pp.
420
457
.10.1109/PROC.1982.12331
24.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emani-Naeini
,
A.
,
2003
,
Feedback Control of Dynamic Systems
, 4th ed.,
Prentice-Hall
,
Upper Saddle River, NJ
.
25.
Ali
,
S. M.
,
Mantell
,
S. C.
, and
Longmire
,
E. K.
,
2011
, “
Mechanical Performance of Microcantilevers in Liquids
,”
Microelectromech. Syst.
,
20
(
2
), pp.
441
450
.10.1109/JMEMS.2011.2107883
26.
Walters
,
D. A.
,
Cleveland
,
J. P.
,
Thomson
,
N. H.
,
Hansma
,
P. K.
,
Wendman
,
M. A.
,
Gurley
,
G.
, and
Elings
,
V.
, “
Short Cantilevers for Atomic Force Microscopy
,”
Rev. Sci. Instrum.
,
67
(
10
), pp.
3583
3590
.10.1063/1.1147177
27.
Shackelford
,
J. F.
, and
Alexander
,
W.
,
2003
,
CRC Materials Science and Engineering Handbook
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
28.
Philip
,
J.
,
Hess
,
P.
,
Feygelson
,
T.
,
Butler
,
J. E.
,
Chattopadhyay
,
S.
,
Chen
,
K. H.
, and
Chen
,
L. C.
,
2003
, “
Elastic, Mechanical, and Thermal Properties of Nanocrystalline Diamond Films
,”
J. Appl. Phys.
,
93
(
4
), pp.
2164
2171
.10.1063/1.1537465
You do not currently have access to this content.