A general analytical method, referred to as the Fourier spectral element method, is presented for the dynamic analysis of plate structures consisting of any number of arbitrarily oriented rectangular plates. The compatibility conditions between any two adjacent plates are generally described in terms of three-dimensional elastic couplers with both translational and rotational stiffnesses. More importantly, all plates involved can be arbitrarily restrained along any edges in contrast to the commonly imposed condition: each plate has to be simply supported along, at least, one pair of parallel edges. Thus, plate structures here are not limited to Levy-type plates as typically assumed in other techniques. The flexural and in-plane displacement fields on each plate are analytically expressed as accelerated Fourier series expansions and the expansion coefficients are considered as the generalized coordinates to be determined using the familiar Rayleigh–Ritz technique. The accuracy and reliability of the present method are validated by both finite element analysis (FEA) and experimental data for box structures under various boundary conditions.

References

1.
Langley
,
R. S.
, and
Cotoni
,
V.
,
2004
, “
Response Variance Prediction in the Statistical Energy Analysis of Built-Up Systems
,”
J. Acoust. Soc. Am.
,
115
(
2
), pp.
706
718
.10.1121/1.1642621
2.
Popplewell
,
N.
,
1971
, “
The Vibration of Box-Like Structure I: Natural Frequencies and Normal Modes
,”
J. Sound Vib.
,
13
(
4
), pp.
357
365
.10.1016/0022-460X(71)90373-7
3.
Popplewell
,
N.
,
1975
, “
The Response of Box-Like Structures to Weak Explosions
,”
J. Sound Vib.
,
42
(
1
), pp.
65
84
.10.1016/0022-460X(75)90303-X
4.
Dickinson
,
S. M.
, and
Warburton
,
G. A.
,
1967
, “
Vibration of Box-Type Structures
,”
J. Mech. Eng. Sci.
,
9
(
4
), pp.
325
335
.10.1243/JMES_JOUR_1967_009_049_02
5.
Kim
,
C. S.
, and
Dickinson
,
S. M.
,
2008
, “
The Flexural Vibration of Line Supported Rectangular Plate Systems
,”
J. Sound Vib.
,
114
(
1
), pp.
129
142
.10.1016/S0022-460X(87)80239-0
6.
Yuan
,
J.
, and
Dickinson
,
S. M.
,
1992
, “
The Flexural Vibration of Rectangular Plate Systems Approached by Using Artificial Springs in the Rayleigh-Ritz Method
,”
J. Sound Vib.
,
159
(
1
), pp.
39
55
.10.1016/0022-460X(92)90450-C
7.
Yuan
,
J.
, and
Dickinson
,
S. M.
,
1993
, “
On the Continuity Conditions Enforced When Using Artificial Springs in the Rayleigh-Ritz Method
,”
J. Sound Vib.
,
161
(
3
), pp.
538
544
.10.1006/jsvi.1993.1092
8.
Langley
,
R. S.
,
1991
, “
An Elastic Wave Technique for the Free Vibration Analysis of Plate Assemblies
,”
J. Sound Vib.
,
145
(
2
), pp.
261
277
.10.1016/0022-460X(91)90591-7
9.
Rebillard
,
E.
, and
Guyader
,
J. L.
,
1995
, “
Vibration Behavior of a Population of Coupled Plates: Hypersensitivity to the Connection Angle
,”
J. Sound Vib.
,
188
(
3
), pp.
435
454
.10.1006/jsvi.1995.0603
10.
Park
,
D. H.
, and
Hong
,
S. Y.
,
2001
, “
Power Flow Models and Analysis of In-Plane Waves in Finite Coupled Thin Plates
,”
J. Sound Vib.
,
244
(
4
), pp.
651
668
.10.1006/jsvi.2000.3517
11.
Fulford
,
R. A.
, and
Peterson
,
A. A. T.
,
2000
, “
Estimation of Vibration Power in Built-Up Systems Involving Box-Like Structures, Part 1: Uniform Force Distribution
,”
J. Sound Vib.
,
232
(
5
), pp.
877
895
.10.1006/jsvi.1999.2774
12.
Langley
,
R. S.
,
1989
, “
Application of the Dynamic Stiffness Method to the Free and Forced Vibrations of Aircraft Panels
,”
J. Sound Vib.
,
135
(
2
), pp.
319
331
.10.1016/0022-460X(89)90728-1
13.
Khumbah
,
F. M.
, and
Langley
,
R. S.
,
1998
, “
Efficient Dynamic Modeling of Aerospace Box-Type Structures
,” The 27th international Congress on Noise Control Engineering (InterNoise'98), Christchurch, New Zealand, November 16-18, Vol. 3.
14.
Bercin
,
A. N.
, and
Langley
,
R. S.
,
1966
, “
Application of the Dynamics Stiffness Technique to the In-Plane Vibration of Plate Structure
,”
Comput. Struct.
,
59
(
5
), pp.
869
875
.10.1016/0045-7949(95)00308-8
15.
Bercin
,
A. N.
,
1997
, “
Eigenfrequencies of Rectangular Plate Assemblies
,”
Comput. Struct.
,
65
(
5
), pp.
703
711
.10.1016/S0045-7949(96)00348-3
16.
Azimi
,
S.
,
Hamilton
,
J. F.
, and
Soedel
,
W.
,
1984
, “
The Receptance Method Applied to the Free Vibration of Continuous Rectangular Plates
,”
J. Sound Vib.
,
93
, pp.
9
29
.10.1016/0022-460X(84)90348-1
17.
Beshara
,
M.
, and
Keane
,
A. J.
,
1998
, “
Vibrational Energy Flows Between Plates With Compliant and Dissipative Couplings
,”
J. Sound Vib.
,
213
(
3
), pp.
511
535
.10.1006/jsvi.1998.1521
18.
Kim
,
H. S.
,
Kang
,
H. J.
, and
Kim
,
J. S.
,
1994
, “
Transmission of Bending Waves in Inter-Connected Rectangular Plates
,”
J. Acoust. Soc. Am.
,
96
, pp.
1557
1562
.10.1121/1.410234
19.
Cuschieri
,
J. M.
,
1990
, “
Structural Power-Flow Analysis Using a Mobility Approach of an L-Shaped Plate
,”
J. Acoust. Soc. Am.
,
87
(
3
), pp.
1159
1165
.10.1121/1.398789
20.
Grice
,
R. M.
, and
Pinnington
,
R. J.
,
2000
, “
Vibration Analysis of a Thin-Plate Box Using a Finite Element Model Which Accommodates Only In-Plane Motion
,”
J. Sound Vib.
,
232
(
2
), pp.
449
471
.10.1006/jsvi.1999.2748
21.
Grice
,
R. M.
, and
Pinnington
,
R. J.
,
2002
, “
Analysis of the Flexural Vibration of a Thin-Plate Box Using a Combination of Finite Element Analysis and Analytical Impedances
,”
J. Sound Vib.
,
249
(
3
), pp.
499
527
.10.1006/jsvi.2001.3847
22.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
, pp.
468
488
.10.1016/0021-9991(84)90128-1
23.
Zak
,
A.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2006
, “
Propagation of In-Plane Elastic Waves in a Composite Panel
,”
Finite Elements in Analysis and Design
,
43
, pp.
145
154
.10.1016/j.finel.2006.08.003
24.
J.P.
Boyd
,
1989
,
Chebyshev and Fourier Spectral Methods
,
Springer
,
Berlin
.
25.
Kudela
,
P.
,
Żak
,
A.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2007
, “
Modelling of Wave Propagation in Composite Plates Using the Time Domain Spectral Element Method
,”
J. Sound Vib.
,
302
, pp.
728
745
.10.1016/j.jsv.2006.12.016
26.
Gopalakrishnan
,
S.
, and
Mitra
,
M.
,
2010
,
Wavelet Methods for Dynamical Problems: With Application to Metallic, Composite, and Nano-Composite Structures
,
CRC Press
, Boca Raton, FL.
27.
Doyle
,
J. F.
,
1997
,
Wave Propagation in Structures
,
Springer
,
New York
.
28.
Ahmida
,
K. M.
, and
Arruda
,
J. R. F.
,
2001
, “
Spectral Element-Based Prediction of Active Power Flow in Timoshenko Beams
,”
Int. J. Solids Struct.
,
38
, pp.
1669
1679
.10.1016/S0020-7683(00)00128-1
29.
Igawa
,
H.
,
Komatru
,
K.
,
Yamaguchi
,
I.
, and
Kasai
,
T.
,
2004
, “
Wave Propagation Analysis of Frame Structures Using the Spectral Element Method
,”
J. Sound Vib.
,
277
, pp.
1071
1081
.10.1016/j.jsv.2003.11.026
30.
Lee
,
U.
,
2009
,
Spectral Element Method in Structural Dynamics
,
Wiley
,
New York
.
31.
Birgersson
,
F.
,
Ferguson
,
N. S.
, and
Finnveden
,
S.
,
2003
, “
Application of the Spectral Finite Element Method to Turbulent Boundary Layer Induced Vibration of Plates
,”
J. Sound Vib.
,
259
(
4
), pp.
873
891
.10.1006/jsvi.2002.5127
32.
Lee
,
U.
,
Kim
,
J.
, and
Leung
,
A. Y. T.
,
2000
, “
The Spectral Element Method in Structural Dynamics
,”
Shock Vib.
,
32
(6), pp.
451
465
.10.1177/058310240003200601
33.
Leissa
,
A.
,
1969
, “
Vibration of Plates
,” NASA Paper No. SP-160.
34.
Blevin
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
VanNostrand
,
New York
.
35.
Gorman
,
D. J.
,
1999
,
Vibration Analysis of Plates by the Superposition Method
,
World Scientific
,
Singapore
.
36.
Bhat
,
R. B.
,
Singh
,
J.
, and
Mundkur
,
G.
,
1993
, “
Plate Characteristic Functions and Natural Frequencies of Vibration of Plates by Iterative Reduction of Partial Differential Equation
,”
ASME J. Vib. Acoust.
,
115
, pp.
177
181
.10.1115/1.2930328
37.
Cortinez
, V
. H.
, and
Laura
,
P. A. A.
,
1990
, “
Analysis of Vibrating Rectangular Plates of Discontinuously Varying Thickness by Means of the Kantorovich Extended Method
,”
J. Sound Vib.
,
137
, pp.
457
461
.10.1016/0022-460X(90)90811-D
38.
Wang
,
G.
, and
Wereley
,
N. M.
,
2002
, “
Free In-Plane Vibration of Rectangular Plates
,”
AIAA J.
,
40
, pp.
953
959
.10.2514/3.15145
39.
Li
,
W. L.
,
2000
, “
Free Vibrations of Beams With General Boundary Conditions
,”
J. Sound Vib.
,
237
, pp.
709
725
.10.1006/jsvi.2000.3150
40.
Li
,
W. L.
,
Bonilha
,
M. W.
, and
Xiao
,
J.
,
2007
, “
Vibrations and Power Flows in a Coupled Beam System
,”
ASME J. Vib. Acoust.
,
129
, pp.
616
622
.10.1115/1.2775518
41.
Li
,
W. L.
, and
Xu
,
H. A.
,
2009
, “
An Exact Fourier Series Method for the Vibration Analysis of Multi-Span Beam Systems
,”
ASME J. Computational Nonlinear Dyn.
,
4
, pp.
1
9
.10.1115/1.3079681
42.
Du
,
J. T.
,
Li
,
W. L.
,
Li
,
W. Y.
,
Zhang
,
X. F.
, and
Liu
,
Z. G.
,
2010
, “
Free In-Plane Vibration Analysis of Rectangular Plates With Elastically Point-Supported Edges
,”
ASME J. Vib. Acoust.
,
132
, p.
031002
.10.1115/1.4000777
43.
Zhang
,
X. F.
, and
Li
,
W. L.
,
2009
, “
Vibrations of Rectangular Plates With Arbitrary Non-Uniform Elastic Edge Restraints
,”
J. Sound Vib.
,
326
(
2009
), pp.
221
234
.10.1016/j.jsv.2009.04.021
44.
Dai
,
L.
,
Yang
,
T. J.
,
Li
,
W. L.
,
Du
,
J. T.
, and
Jin
,
G. Y.
,
2012
, “
Dynamic Analysis of Circular Cylindrical Shells With General Boundary Condition
,”
ASME J. Vib. Acoust.
,
134
, p.
041004
.10.1115/1.4005833
45.
Xu
,
H. A.
,
Du
,
J. T.
, and
Li
,
W. L.
,
2010
, “
Vibrations of Rectangular Plates Reinforced by any Number of Beams of Arbitrary Lengths and Placement Angles
,”
J. Sound Vib.
,
329
, pp.
3759
3779
.10.1016/j.jsv.2010.03.023
46.
Tolstov
,
G. P.
,
1965
,
Fourier Series
,
Englewood Cliffs
,
NJ
.
47.
Zygmund
,
A.
,
1968
,
Trigonometric Series
,
Cambridge University
,
Cambridge, UK
, Vol.
I
.
48.
Gottlieb
,
D.
, and
Orszag
,
S. A.
,
1977
,
Numerical Analysis of Spectral Methods
.
SIAM
, Philadelphia, PA.
49.
Du
,
J. T.
,
Li
,
W. L.
,
Liu
,
Z.
,
Jin
,
G.
, and
Yang
,
T. J.
,
2011
, “
Free Vibration of Two Elastically Coupled Rectangular Plates With Uniform Elastic Boundary Restraints
,”
J. Sound Vib.
,
330
, pp.
788
804
.10.1016/j.jsv.2010.08.044
You do not currently have access to this content.