Existing design criteria for vibration energy harvesting systems provide guidance on the appropriate selection of the seismic mass and load resistance. To harvest maximum power in resonant devices, the mass needs to be as large as possible and the load resistance needs to be equal to the sum of the internal resistance of the generator and the mechanical damping equivalent resistance. However, it is shown in this paper that these rules produce suboptimum results for applications where there is a constraint on the relative displacement of the seismic mass, which is often the case. When the displacement is constrained, increasing the mass beyond a certain limit reduces the amount of harvested power. The optimum load resistance in this case is shown to be equal to the generator's internal resistance. These criteria are extended to those devices that harvest energy from a low-frequency vibration by utilizing an interface that transforms the input motion to higher frequencies. For such cases, the optimum load resistance and the corresponding transmission ratio are derived.

References

1.
Khaligh
,
A.
,
Peng
,
Z.
, and
Cong
,
Z.
,
2010
, “
Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art
,”
IEEE Trans. Ind. Electron.
,
57
, pp.
850
860
.10.1109/TIE.2009.2024652
2.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Measure. Sci. Technol.
,
17
, pp.
R175
R195
.10.1088/0957-0233/17/12/R01
3.
Sodano
,
H. A.
, and
Inman
,
D. J.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vibr. Dig.
,
36
, pp.
197
205
.10.1177/0583102404043275
4.
Antaki
,
J. F.
,
Bertocci
,
G. E.
,
Green
,
E. C.
,
Nadeem
,
A.
,
Rintoul
,
T.
,
Kormos
,
R. L.
, and
Griffith
,
B. P.
,
1995
, “
A Gait-Powered Autologous Battery Charging System for Artificial Organs
,”
ASAIO J.
,
41
, pp.
M588
M595
.10.1097/00002480-199507000-00079
5.
Naruse
,
Y.
,
Matsubara
,
N.
,
Mabuchi
,
K.
,
Izumi
,
M.
, and
Suzuki
,
S.
,
2009
, “
Electrostatic Micro Power Generation From Low-Frequency Vibration Such as Human Motion
,”
J. Micromech. Microeng.
,
19
(9), p.
094002
.10.1088/0960-1317/19/9/094002
6.
Yang
,
J.
,
Wen
,
Y.
,
Li
,
P.
,
Dai
,
X.
, and
Li
,
M.
,
2011
, “
A New Vibration Energy Harvester Using Magnetoelectric Transducer
,”
J. Magn.
,
16
, pp.
150
156
.10.4283/JMAG.2011.16.2.150
7.
Yang
,
B.
,
Lee
,
C.
,
Xiang
,
W.
,
Xie
,
J.
,
He
,
J. H.
,
Kotlanka
,
R. K.
,
Low
,
S. P.
, and
Feng
,
H.
,
2009
, “
Electromagnetic Energy Harvesting From Vibrations of Multiple Frequencies
,”
J. Micromech. Microeng.
,
19
(3), p.
035001
10.1088/0960-1317/19/3/035001.
8.
Glynne-Jones
,
P.
,
Tudor
,
M. J.
,
Beeby
,
S. P.
, and
White
,
N. M.
,
2004
, “
An Electromagnetic, Vibration-Powered Generator for Intelligent Sensor Systems
,”
Sensors Actuators
,
110
, pp.
344
349
.10.1016/j.sna.2003.09.045
9.
Williams
,
C. B.
, and
Yates
,
R. B.
,
1996
, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sensors Actuators
,
A52
, pp.
8
11
.10.1016/0924-4247(96)80118-X
10.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vibr.
,
293
, pp.
409
425
.10.1016/j.jsv.2005.10.003
11.
Wang
,
J.
,
Wang
,
W.
, and
Atallah
,
K.
,
2011
, “
A Linear Permanent-Magnet Motor for Active Vehicle Suspension
,”
IEEE Trans. Veh. Technol.
,
60
, pp.
55
63
.10.1109/TVT.2010.2089546
12.
Gupta
,
A.
,
Jendrzejczyk
,
J. A.
,
Mulcahy
,
T. M.
, and
Hull
,
J. R.
,
2006
, “
Design of Electromagnetic Shock Absorbers
,”
Int. J. Mech. Mater. Design
,
3
, pp.
285
291
.10.1007/s10999-007-9031-5
13.
Mansour
,
M. O.
,
Arafa
,
M. H.
, and
Megahed
,
S. M.
,
2010
, “
Resonator With Magnetically Adjustable Natural Frequency for Vibration Energy Harvesting
,”
Sensors Actuators A
,
163
, pp.
297
303
.10.1016/j.sna.2010.07.001
14.
Cammarano
,
A.
,
Burrow
,
S. G.
,
Barton
,
D. A. W.
,
Carrella
,
A.
, and
Clare
,
L. R.
,
2010
, “
Tuning a Resonant Energy Harvester Using a Generalized Electrical Load
,”
Smart Mater. Struct.
,
19
, pp.
1
7
.10.1088/0964-1726/19/5/055003
15.
Saha
,
C. R.
,
O'Donnell
,
T.
,
Loder
,
H.
,
Beeby
,
S.
, and
Tudor
,
J.
,
2006
, “
Optimization of an Electromagnetic Energy Harvesting Device
,”
IEEE Trans. Magn.
,
42
, pp.
3509
3511
.10.1109/TMAG.2006.879447
16.
Rome
,
L. C.
,
Flynn
,
L.
,
Goldman
,
E. M.
, and
Yoo
,
T. D.
,
2005
, “
Generating Electricity While Walking With Loads
,”
Science
,
309
, pp.
1725
1728
.10.1126/science.1111063
17.
Brown
,
P.
,
Hardisty
,
D.
, and
Molteno
,
T. C. A.
,
2006
, “
Wave-Powered Small Scale Generation System for Ocean Exploration
,”
Proceeding of the International Conference of Ocean-Asia Pacific
(
OCEANS 2006
), Singapore, May 16–1910.1109/OCEANSAP.2006.4393878.
You do not currently have access to this content.