A dynamic model of a pantograph-catenary system is established. In the model, motion of the pantograph is coupled with that of the catenary by friction. Stability of the pantograph-catenary system is studied using the finite element complex eigenvalue method. Numerical results show that there is a strong propensity of self-excited vibration of the pantograph-catenary system when the friction coefficient is greater than 0.1. The dynamic transient analysis results show that the self-excited vibration of the pantograph-catenary system can affect the contact condition between the pantograph and catenary. If the amplitude of the self-excited vibration is strong enough, the contact may even get lost. Parameter sensitivity analysis shows that the coefficient of friction, static lift force, pan-head suspension spring stiffness, tension of contact wire, and the spatial location of pantograph have important influences on the friction-induced, self-excited vibration of the pantograph-catenary system. Bringing the friction coefficient below a certain level and choosing a suitable static lift force can suppress or eliminate the contact loss between the pantograph and catenary.

References

1.
Jensen
,
C. N.
,
True
,
H.
, and
Consult
,
S.
,
1998
, “
Dynamic of an Electrical Overhead Line System and Moving Pantographs
,”
Veh. Syst. Dyn.
,
28
, pp.
104
113
.10.1080/00423119808969555
2.
Yagi
,
T.
,
Stensson
,
A.
, and
Hardell
,
C.
,
1996
, “
Simulation and Visualization of the Dynamic Behavior of an Overhead Power System With Contact Breaking
,”
Veh. Syst. Dyn.
,
25
, pp.
31
49
.10.1080/00423119608968956
3.
Poetsch
,
G.
,
Evans
,
J.
,
Meisinger
,
R.
,
Baldauf
,
W.
,
Veitl
,
A.
, and
Wallaschek
,
J.
,
1997
, “
Pantograph/Catenary Dynamics and Control
,”
Veh. Syst. Dyn.
,
28
, pp.
159
195
.10.1080/00423119708969353
4.
Ockendon
,
J. R.
, and
Tayler
,
A. B.
,
1971
, “
The Dynamics of a Current Collection System for an Electric Locomotive
,”
Proc. R. Soc. London A
,
322
(1551), pp.
447
468
.10.1098/rspa.1971.0078
5.
Vinayagalingam
,
T.
,
1983
, “
Computer Evaluation of Controlled Pantographs for Current Collection From Simple Catenary Overhead Equipment at High Speed
,”
ASME J. Dyn. Syst., Meas., Control
,
105
, pp.
287
294
.10.1115/1.3140673
6.
Wormley
,
D.
,
Seering
,
W.
,
Eppinger
,
S.
, and
O'Connor
,
D.
,
1984
, “
Dynamic Performance Characteristics of New Configuration Pantograph-Catenary Systems
,” U.S. Department of Transportation Report No. DOT/OST, pp.
34
85
.
7.
Seering
,
W.
,
Ambruster
,
K.
,
Vesely
,
C.
, and
Wormley
,
D.
,
1991
, “
Experimental and Analytical Study of Pantograph Dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
13
, pp.
242
247
.10.1115/1.2896371
8.
Wu
,
T. X.
, and
Brennan
,
M. J.
,
1998
, “
Basic Analytical Study of Pantograph–Catenary System Dynamics
,”
Veh. Sys. Dyn.
,
30
, pp.
443
456
.10.1080/00423119808969460
9.
Shan
,
Q.
, and
Zhai
,
W. M.
,
1998
, “
A Macro Element Method for Catenary Mode Analysis
,”
Comput. Struct.
,
69
, pp.
767
772
.10.1016/S0045-7949(98)00130-8
10.
Drugge
,
L.
,
Larsson
,
T.
, and
Stensson
,
A.
,
1999
, “
Modelling and Simulation of Catenary-Pantograph Interaction
,”
Veh. Syst. Dyn.
,
33S
, pp.
490
501
.
11.
Arnold
,
M.
, and
Simeon
,
B.
,
2000
, “
Pantograph and Catenary Dynamics: A Benchmark Problem and Its Numerical Solution
,”
Appl. Numer. Math.
,
34
, pp.
345
362
.10.1016/S0168-9274(99)00038-0
12.
Mei
,
G. M.
, and
Zhang
,
W. H.
,
2002
, “
Dynamics Model and Behavior of Pantograph/Catenary System
,”
J. Traffic Transp. Eng.
,
2
, pp.
20
25
(in Chinese).
13.
Collina
,
A.
, and
Bruni
,
S.
,
2002
, “
Numerical Simulation of Pantograph-Overhead Equipment Interaction
,”
Veh. Syst. Dyn.
,
38
(
4
), pp.
261
291
.10.1076/vesd.38.4.261.8286
14.
Lopez-Garcia
,
O.
,
Carnicero
,
A.
, and
Torres
, V
.
,
2006
, “
Computation of the Initial Equilibrium of Railway Overheads Based on the Catenary Equation
,”
Eng. Struct.
,
28
, pp.
1387
1394
.10.1016/j.engstruct.2006.01.007
15.
Zhang
,
W. H.
,
Mei
,
G. M.
, and
Wu
,
X. J.
,
2002
, “
Hybrid Simulation of Dynamics for the Pantograph–Catenary System
,”
Veh. Syst. Dyn.
,
38
, pp.
393
414
.10.1076/vesd.38.6.393.8347
16.
Ouyang
,
H.
,
Nack
,
W.
,
Yuan
,
Y.
, and
Chen
,
F.
,
2005
, “
Numerical Analysis of Automotive Disc Brake Squeal: A Review
,”
Int. J. Veh. Noise Vib.
,
1
(
3/4
), pp.
207
231
.10.1504/IJVNV.2005.007524
17.
Liles
,
G. D.
,
1989
, “
Analysis of Disc Brake Squeal Using Finite Element Methods
,”
SAE
Technical Paper No. 891150.10.4271/891150
18.
Nack
,
W. V.
,
2000
, “
Brake Squeal Analysis by Finite Elements
,”
Int. J. Veh. Des.
,
23
(3/4), pp.
263
275
.10.1504/IJVD.2000.001895
19.
Yuan
,
Y.
,
1996
, “
An Eigenvalue Analysis Approach to Brake Squeal Problem
,”
Proceedings of the 29th ISATA Conference, Automotive Braking Systems
,
Florence, Italy
, June 3–6.
20.
Bajer
,
A.
,
Belsky
, V
.
, and
Zeng
,
L. J.
,
2003
, “
Combining a Nonlinear Static Analysis and Complex Eigenvalue Extraction in Brake Squeal Simulation
,”
SAE
Technical Paper No. 2003-01-3349.10.4271/2003-01-3349
21.
Chen
,
G. X.
,
Zhou
,
Z. R.
,
Ouyang
,
H.
,
Jin
,
X. S.
,
Zhu
,
M. H.
, and
Liu
,
Q. Y.
,
2010
, “
A Finite Element Study on Rail Corrugation Based on Saturated Creep Force-Induced Self-Excited Vibration of a Wheelset–Track System
,”
J. Sound Vib.
,
329
, pp.
4643
4655
.10.1016/j.jsv.2010.05.011
22.
Kurzeck
,
B.
,
2011
, “
Combined Friction Induced Oscillations of Wheelset and Track During the Curving of Metros and Their Influence on Corrugation
,”
Wear
,
271
(
1–2
), pp.
299
310
.10.1016/j.wear.2010.10.049
23.
Kinkaid
,
N. M.
,
O'Reilly
,
O. M.
, and
Papadopoulos
,
P.
,
2003
, “
Automotive Disc Brake Squeal
,”
J. Sound Vib.
,
267
(
1
), pp.
105
166
.10.1016/S0022-460X(02)01573-0
24.
Ding
,
T.
,
Chen
,
G. X.
,
Wang
,
X.
,
Zhu
,
M. H.
,
Zhang
,
W. H.
, and
Zhou
,
Z. R.
,
2011
, “
Friction and Wear Behavior of Pure Carbon Strip Sliding Against Copper Contact Wire Under AC Passage at High Speeds
,”
Tribology Int.
,
44
, pp.
437
444
.10.1016/j.triboint.2010.11.022
25.
Zhou
,
N.
, and
Zhang
,
W. H.
,
2011
, “
Investigation on Dynamic Performance and Parameter Optimization Design of Pantograph and Catenary System
,”
Finite Elem. Anal. Des.
,
47
, pp.
288
295
.10.1016/j.finel.2010.10.008
You do not currently have access to this content.