Characterizing dynamic characteristics of structures with uncertainty is an important task that provides critical predictive information for structural design, assessment, and control. In practical applications, sampling is the fundamental approach to uncertainty analysis but has to be conducted under various constraints. To address the frequently encountered data scarcity issue, in the present paper Gaussian processes are employed to predict and quantify structural dynamic responses, especially responses under uncertainty. A self-contained description of Gaussian processes is presented within the Bayesian framework with implementation details, and then a series of case studies are carried out using a cyclically symmetric structure that is highly sensitive to uncertainties. Structural frequency responses are predicted with data sparsely sampled within the full frequency range. Based on the inferred credible intervals, a measure is defined to quantify the potential risk of response maxima. Gaussian process emulation is proposed for Monte Carlo uncertainty analysis to reduce data acquisition costs. It is shown that Gaussian processes can be an efficient data-based tool for analyzing structural dynamic responses in the presence of uncertainty. Meanwhile, some technical challenges in the implementation of Gaussian processes are discussed.

References

1.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
2.
Panayirci
,
H. M.
,
Pradlwarter
,
H. J.
, and
Schueller
,
G. I.
,
2011
, “
Efficient Stochastic Finite Element Analysis Using Guyan Reduction
,”
Adv. Eng. Software
,
42
(
4
), pp.
187
196
.10.1016/j.advengsoft.2011.02.004
3.
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2000
, “
Derivatives of Complex Eigenvectors Using Nelson's Method
,”
AIAA J.
,
38
(
12
), pp.
2355
2357
.10.2514/2.907
4.
Soize
,
C.
,
2000
, “
A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics
,”
Probab. Eng. Mech.
,
15
, pp.
277
294
.10.1016/S0266-8920(99)00028-4
5.
Soize
,
C.
,
Capiez-Lernount
,
E.
,
Durand
,
J.-F.
,
Fernandez.
,
C.
, and
Gagliardini.
,
L.
,
2008
, “
Probabilistic Model Identification of Uncertainties in Computational Models for Dynamical Systems and Experimental Validation
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
150
163
.10.1016/j.cma.2008.04.007
6.
Adhikari
,
S.
, and
Sarkar
,
A.
,
2009
, “
Uncertainty in Structural Dynamics: Experimental Validation of a Wishart Random Matrix Model
,”
J. Sound Vib.
,
323
, pp.
802
825
.10.1016/j.jsv.2009.01.030
7.
Hinke
,
L.
,
Dohnal
,
F.
,
Mace
,
B. R.
,
Waters
,
T. P.
, and
Ferguson
,
N. S.
,
2009
, “
Component Mode Synthesis as a Framework for Uncertainty Analysis
,”
J. Sound Vib.
,
324
, pp.
161
178
.10.1016/j.jsv.2009.01.056
8.
Bladh
,
R.
,
Pierre
,
C.
, and
Castanier
,
M. P.
,
2002
, “
Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
311
324
.10.1115/1.1447236
9.
Lee
,
S.-Y.
, and
Castanier
,
M. P.
,
2006
, “
Component-Mode-Based Monte Carlo Simulation for Efficient Probabilistic Vibration Analysis
,”
Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Newport, RI
, May 1–4,
AIAA
Paper No. 2006-1990.10.2514/6.2006-1990
10.
Dohnal
,
F.
,
Mace
,
B. R.
, and
Ferguson
,
N. S.
,
2009
, “
Joint Uncertainty Propagation in Linear Structural Dynamics Using Stochastic Reduced Basis Methods
,”
AIAA J.
,
47
, pp.
961
969
.10.2514/1.38974
11.
Tournour
,
M. A.
,
Atalla
,
N.
,
Chiello
,
O.
, and
Sgard
,
F.
,
2001
, “
Validation, Performance, Convergence and Application of Free Interface Component Mode Synthesis
,”
Comput. Struct.
,
79
, pp.
1861
1876
.10.1016/S0045-7949(01)00114-6
12.
Craig
,
R. R.
, Jr
.,
2000
, “
Coupling of Substructure for Dynamic Analyses: An Overview
,”
Proceedings of the 41st AIAA/ASME/ASCE/AHSIASC Structures, Structural Dynamics, and Materials Conference and Exhibit
,
Atlanta, GA
.
13.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
, pp.
597
605
.10.1115/1.1508384
14.
Moyroud
,
F.
,
Fransson
,
T.
, and
Jacquet-Richardet
,
G.
,
2002
, “
A Comparison of Two Finite Element Reduction Techniques for Mistuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
942
952
.10.1115/1.1415741
15.
Mbaye
,
M.
,
Soize
,
C.
, and
Ousty
,
J.-P.
,
2010
, “
A Reduced-Order Model of Detuned Cyclic Dynamical Systems With Geometric Modifications Using a Basis of Cyclic Modes
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
112502
.10.1115/1.4000805
16.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
, pp.
89
99
.10.1115/1.1338947
17.
Bah
,
M. T.
,
Nair
,
P. B.
,
Bhaskar
,
A.
, and
Keane
,
A. J.
,
2003
, “
Stochastic Component Mode Synthesis
,”
Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Norfolk, VA
, April 7–10,
AIAA
Paper No. 2003-1750.10.2514/6.2003-1750
18.
Xia
,
Z.
, and
Tang
,
J.
,
2011
, “
Uncertainty Analysis of Structural Dynamics by Using Two-Level Gaussian Processes
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Denver, CO, November 11–17
,
ASME
Paper No. IMECE2011-63708.10.1115/IMECE2011-63708
19.
Neal
,
R. M.
,
1998
, “
Regression and Classification Using Gaussian Process Priors
,”
Bayesian Statistics 6
,
J. M.
Bernardo
, ed.,
Oxford University
,
New York
.
20.
MacKay
,
D. J. C.
,
2003
,
Information Theory, Inference and Learning Algorithms
,
Cambridge University Press
,
Cambridge, UK
.
21.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT
,
Cambridge, MA
.
22.
DiazDelaO
,
F. A.
, and
Adhikari
,
S.
,
2010
, “
Structural Dynamic Analysis Using Gaussian Process Emulators
,”
Eng. Comput.
,
27
, pp.
580
605
.10.1108/02644401011050895
23.
DiazDelaO
,
F. A.
, and
Adhikari
,
S.
,
2011
, “
Gaussian Process Emulators for the Stochastic Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
87
, pp.
521
540
.10.1002/nme.3116
24.
Hasen
,
J.
,
Murray-Smith
,
R.
,
Johansen
,
T. A.
,
2005
, “
Nonparametric Identification of Linearizations and Uncertainty Using Gaussian Process Models—Application to Robust Wheel Slip Control
,”
Proceedings of the Joint 44th IEEE Conference on Decision and Control, and European Control Conference
(CDC-ECC’05)
,
Seville, Spain
, December 12–15.10.1109/CDC.2005.1582968
25.
Gregorcic
,
G.
, and
Lightbody
,
G.
,
2009
, “
Gaussian Process Approach for Modeling of Nonlinear Systems
,”
Eng. Applic. Artif. Intell.
,
22
, pp.
522
533
.10.1016/j.engappai.2009.01.005
26.
Azman
,
K.
, and
Kocijan
,
J.
,
2009
, “
Fixed-Structure Gaussian Process Model
,”
Int. J. Syst. Sci.
,
40
, pp.
1253
1262
.10.1080/00207720903038028
27.
Mohanty
,
S.
,
Das
,
S.
,
Chattopadhyay
,
A.
, and
Peralta
,
P.
,
2009
, “
Gaussian Process Time Series Model for Life Prognosis of Metallic Structures
,”
J. Intell. Mater. Syst. Struct.
,
20
, pp.
887
896
.10.1177/1045389X08099602
28.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations are Available
,”
Biometrika
,
87
, pp.
1
13
.10.1093/biomet/87.1.1
29.
Sivia
,
D. S.
, and
Skilling
,
J.
,
2006
,
Data Analysis—A Bayesian Tutorial
, 2nd ed.,
Oxford University
,
New York
.
30.
Loredo
,
T. J.
,
1990
,
From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics, in Maximum Entropy and Bayesian Methods
,
Academic Publishers
,
Dordrecht, The Netherlands
.
31.
Mockus
,
J.
,
Eddy
,
W.
, and
Reklaitis
,
G.
,
1997
,
Bayesian Heuristic Approach to Discrete and Global Optimization
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
32.
Alvarez
,
M. A.
, and
Lawrence
,
N. D.
,
2011
, “
Computationally Efficient Convolved Multiple Output Gaussian Processes
,”
J. Mach. Learn. Res.
,
12
, pp.
1459
1500
.
33.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
,
Supplementary Details on Bayesian Calibration of Computer Codes
,
University of Sheffield
,
Sheffield, UK
.
34.
Swiler
,
L. P.
,
2006
, “
Bayesian Methods in Engineering Design Problems
,” Sandia National Laboratories, Paper No. SAND2005–3249.
35.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc., Ser. B
,
63
, p.
425
464
.10.1111/1467-9868.00294
36.
Whitehead
,
D. S.
,
1998
, “
Maximum Factor by Which Forced Vibration of Blades Can Increase Due to Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
115
119
.10.1115/1.2818061
37.
Kenyon
,
J. A.
, and
Griffin
,
J. H.
,
2003
, “
Forced Response of Turbine Engine Bladed Disks and Sensitivity to Harmonic Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
113
120
.10.1115/1.1498269
38.
Brooks
,
S. P.
,
1998
, “
Markov Chain Monte Carlo Method and Its Application
,”
J. R. Stat. Soc., Ser. D
,
47
(
1
), pp.
69
100
.10.1111/1467-9884.00117
39.
Bastos
,
L. S.
, and
O'Hagan
,
A.
,
2009
, “
Diagnostics for Gaussian Process Emulators
,”
Technometrics
,
51
, pp.
425
438
.10.1198/TECH.2009.08019
You do not currently have access to this content.