Many systems have, by their nature, a small damping and therefore they are potentially subjected to dangerous vibration phenomena. The aim of active vibration control is to contain this phenomenon, improve the dynamic performance of the system, and increase its fatigue strength. A way to reach this goal is to increase the system damping, preferably without changing its natural frequencies and vibration modes. In the past decades this has been achieved by developing the well-known independent modal space control (IMSC) technique. The paper describes a new approach to the synthesis of a modal controller to suppress vibrations in structures. It turns from the traditional formulation of the problem and it demonstrates how the performance of the controller can be evaluated through the analysis of the modal damping matrix of the controlled system. The ability to easily manage this information allows us to synthesize an efficient modal controller. Furthermore, it enables us to easily evaluate the stability of the control, the effects of spillover, and the consequent effectiveness in reducing vibration. Theoretical aspects are supported by experimental applications on a large flexible system.

References

1.
Balas
,
M. J.
,
1978
, “
Modal Control of Certain Flexible Dynamic Systems
,”
SIAM J. Control Optim.
,
16
, pp.
450
462
.10.1137/0316030
2.
Balas
,
M. J.
,
1978
, “
Feedback Control of Flexible Systems
,”
IEEE Trans. Autom. Control
,
AC-23
, pp.
673
679
.10.1109/TAC.1978.1101798
3.
Meirovitch
,
L.
, and
Oz
,
H.
,
1980
, “
Modal-Space Control of Large Flexible Spacecraft Possessing Ignorable Coordinates
,”
J. Guid. Control
,
3
, pp.
569
577
.10.2514/3.56035
4.
Fang
,
J. Q.
,
Li
,
Q. S.
, and
Jeary
,
A. P.
,
2003
, “
Modified Independent Modal Space Control of m.d.o.f. Systems
,”
J. Sound Vib.
,
261
(3), pp.
421
441
.10.1016/S0022-460X(02)01085-4
5.
Falourd
,
X.
,
Lissek
,
H.
, and
René
,
P. J.
,
2009
, “
Active Low Frequency Modal Noise Cancellation for Room Acoustic: An Experimental Study
,”
Proceedings of the XVI International Congress on Sound and Vibration
, Krakow, Poland, July 5–9.
6.
Resta
,
F.
,
Ripamonti
,
F.
,
Cazzulani
,
G.
, and
Ferrari
,
M.
,
2010
, “
Independent Modal Control for Nonlinear Flexible Structures: An Experimental Test Rig
,”
J. Sound Vib.
,
329
, pp.
961
972
.10.1016/j.jsv.2009.10.021
7.
Cazzulani
,
G.
,
Ghielmetti
,
C.
,
Giberti
,
H.
,
Resta
,
F.
, and
Ripamonti
,
F.
,
2011
, “
A Test Rig and Numerical Model for Investigating Truck Mounted Concrete Pumps
,”
Autom. Constr.
,
20
(
8
), pp.
1133
1142
.10.1016/j.autcon.2011.04.015
8.
Hurlebaus
,
S.
,
Stobener
,
U.
, and
Gaul
,
L.
,
2008
, “
Vibration Reduction of Curved Panels by Active Modal Control
,”
Comput. Struct.
,
86
, pp.
251
257
.10.1016/j.compstruc.2007.01.036
9.
Khulief
,
Y. A.
,
1985
, “
Vibration Suppression in Rotating Beams Using Active Modal Control
,”
J. Sound Vib.
,
242
(
4
), pp.
681
699
.10.1006/jsvi.2000.3385
10.
Johnson
,
C. R.
, Jr.
,
1979
, “
On Adaptive Modal Control of Large Flexible Spacecraft
,”
Proceedings of the AIAA Guidance and Control Conference
, Boulder, CO, August 6–8,
AIAA
Paper No. 79-1779, pp.
533
539
.10.2514/6.1979-1779
11.
Meirovitch
,
L.
,
Baruh
,
H.
,
Oz
,
H.
,
1983
, “
A Comparison of Control Techniques for Large Flexible Systems
,”
J. Guid. Control
,
6
(
4
), pp.
302
310
.10.2514/3.19833
12.
Inman
,
D. J.
,
2002
, “
Active Modal Control for Smart Structures
,”
Philos. Trans. Math. Phys. Eng. Sci.
,
359
, pp.
205
219
.10.1098/rsta.2000.0721
13.
Meirovitch
,
L.
, and
Baruh
,
H.
,
1983
, “
Robustness of the Independent Modal Space Control Method
,”
J. Guid. Control
,
6
(
1
), pp.
20
25
.10.2514/3.19797
14.
Meirovitch
,
L.
, and
Baruh
,
H.
,
1981
, “
Optimal Control of Damped Flexible Gyroscopic Systems
,”
J. Guid. Control
,
4
(
2
), pp.
157
163
.10.2514/3.56066
15.
Skidmore
,
G. R.
, and
Hallauer
, Jr.,
W. L.
,
1990
, “
Modal-Space Active Damping of a Beam-Cable Structure: Theory and Experiment
,”
J. Sound Vib.
,
101
(
2
), pp.
149
160
.10.1016/S0022-460X(85)81211-6
16.
Balas
,
M.
,
1979
, “
Direct Velocity Feedback Control of Large Flexible Structures
,”
J. Guid. Control
,
3
(
2
), pp.
252
253
.10.2514/3.55869
17.
Meirovitch
,
L.
,
1990
,
Dynamics and Control of Structures
,
Wiley-Interscience
,
New York
.
18.
Chang
,
M. I. J.
, and
Soong
,
T. T.
,
1980
, “
Optimal Controller Placement in Modal Control of Complex System
,”
J. Math. Anal. Appl.
,
75
, pp.
340
358
.10.1016/0022-247X(80)90084-0
19.
Ibidapo-Obe
,
O.
,
1985
, “
Optimal Actuators Placements for the Active Control of Flexible Structures
,”
J. Math. Anal. Appl.
,
105
, pp.
12
25
.10.1016/0022-247X(85)90094-0
20.
Ibidapo-Obe
,
O.
,
1986
, “
Active Control Performance Enhancement for Reduced-Order Models of Large-Scale System
,”
J. Math. Anal. Appl.
,
120
, pp.
13
24
.10.1016/0022-247X(86)90200-3
21.
Benassi
,
L.
,
Elliott
,
S. J.
, and
Gardonio
,
P.
,
2004
, “
Active Vibration Isolation Using an Inertial Actuator With Local Force Feedback Control
,”
J. Sound Vib.
,
276
, pp.
157
179
.10.1016/j.jsv.2003.07.019
22.
Elliott
,
S. J.
,
Serrand
,
M.
, and
Gardonio
,
P.
,
2001
, “
Feedback Stability Limits for Active Isolation Systems with Reactive and Inertial Actuators
,”
ASME J. Vibr. Acoust.
,
123
, pp.
250
261
.10.1115/1.1350822
You do not currently have access to this content.