Planetary gears are widely used in the industry due to their advantages of compactness, high power-to-weight ratios, high efficiency, and so on. However, planetary gears such as that in wind turbine transmissions always operate under dynamic conditions with internal and external load fluctuations, which accelerate the occurrence of gear failures, such as tooth crack, pitting, spalling, wear, scoring, scuffing, etc. As one of these failure modes, gear tooth crack at the tooth root due to tooth bending fatigue or excessive load is investigated; how it influences the dynamic features of planetary gear system is studied. The applied tooth root crack model can simulate the propagation process of the crack along tooth width and crack depth. With this approach, the mesh stiffness of gear pairs in mesh is obtained and incorporated into a planetary gear dynamic model to investigate the effects of the tooth root crack on the planetary gear dynamic responses. Tooth root cracks on the sun gear and on the planet gear are considered, respectively, with different crack sizes and inclination angles. Finally, analysis regarding the influence of tooth root crack on the dynamic responses of the planetary gear system is performed in time and frequency domains, respectively. Moreover, the differences in the dynamic features of the planetary gear between the cases that tooth root crack on the sun gear and on the planet gear are found.

References

1.
Kahraman
,
A.
,
1994
, “
Natural Modes of Planetary Gear Trains
,”
J. Sound Vib.
,
173
(
1
), pp.
125
130
.10.1006/jsvi.1994.1222
2.
Lin
,
J.
, and
Parker
,
R. G.
,
1999
, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
316
321
.10.1115/1.2893982
3.
Wu
,
X.
, and
Parker
,
R. G.
,
2008
, “
Modal Properties of Planetary Gears With an Elastic Continuum Ring Gear
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031014
.10.1115/1.2839892
4.
Parker
,
R. G.
, and
Wu
,
X.
,
2010
, “
Vibration Modes of Planetary Gears With Unequally Spaced Planets and an Elastic Ring Gear
,”
J. Sound Vib.
,
329
, pp.
2265
2275
.10.1016/j.jsv.2009.12.023
5.
Kahraman
,
A.
,
1994
, “
Load Sharing Characteristics of Planetary Transmissions
,”
Mech. Mach. Theory
,
29
(
8
), pp.
1151
1165
.10.1016/0094-114X(94)90006-X
6.
Singh
,
A.
,
2005
, “
Application of a System Level Model to Study the Planetary Load Sharing Behavior
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
469
476
.10.1115/1.1864115
7.
Ligata
,
H.
,
Kahraman
,
A.
, and
Singh
,
A.
,
2008
, “
An Experimental Study of the Influence of Manufacturing Errors on the Planetary Gear Stresses and Planet Load Sharing
,”
ASME J. Mech. Des.,
130
, p.
041701
.10.1115/1.2885194
8.
Singh
,
A.
,
2010
, “
Load Sharing Behavior in Epicyclic Gears: Physical Explanation and Generalized Formulation
,”
Mech. Mach. Theory
,
45
, pp.
511
530
.10.1016/j.mechmachtheory.2009.10.009
9.
Montestruc
,
A. N.
,
2011
, “
Influence of Planet Pin Stiffness on Load Sharing in Planetary Gear Drives
,”
ASME J. Mech. Des.
,
133
, p.
014501
.10.1115/1.4002971
10.
Velex
,
P.
, and
Flamand
,
L.
,
1996
, “
Dynamic Response of Planetary Trains to Mesh Parametric Excitations
,”
ASME J. Mech. Des.
,
118
, pp.
7
14
.10.1115/1.2826860
11.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1997
, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
,
64
, pp.
217
226
.10.1115/1.2787276
12.
Lin
,
J.
, and
Parker
,
R. G.
,
2002
, “
Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation
,”
J. Sound Vib.
,
249
(
1
), pp.
129
145
.10.1006/jsvi.2001.3848
13.
Parker
,
R. G.
, and
Wu
,
X.
,
2012
, “
Parametric Instability of Planetary Gears With Elastic Continuum Ring Gears
,”
ASME J. Vib. Acoust.
,
134
, p.
041011
.10.1115/1.4005836
14.
Vijayaraghavan
,
D.
, and
Brewe
,
D. E.
,
2005
, “
Effect of Misalignment on the Performance of Planetary Gear Journal Bearings
,” NASA Research Publication.
15.
Chaari
,
F.
,
Fakhfakh
,
T.
,
Hbaieb
,
R.
,
Louati
,
J.
, and
Haddar
,
M.
,
2006
, “
Influence of Manufacturing Errors on the Dynamical Behavior of Planetary Gear
,”
Int. J. Adv. Manufact. Technol.
,
27
, pp.
738
746
.10.1007/s00170-004-2240-2
16.
Lin
,
J.
, and
Parker
,
R. G.
,
2000
, “
Structured Vibration Characteristics of Planetary Gears With Unequally Spaced Planets
,”
J. Sound Vib.
,
233
(
5
), pp.
921
928
.10.1006/jsvi.1999.2581
17.
Parker
,
R. G.
,
2000
, “
A Physical Explanation for the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration
,”
J. Sound Vib.
,
236
(
4
), pp.
561
573
.10.1006/jsvi.1999.2859
18.
Parker
,
R. G.
, and
Lin
,
J.
,
2004
, “
Mesh Phasing Relationships in Planetary and Epicyclic Gears
,”
ASME J. Mech. Des.
,
126
, pp.
365
370
.10.1115/1.1667892
19.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2006
, “
Suppression of Planet Mode Response in Planetary Gear Dynamics Through Mesh Phasing
,”
ASME J. Vib. Acoust.
,
128
, pp.
133
142
.10.1115/1.2171712
20.
Sun
,
T.
, and
Hu
,
H.
,
2003
, “
Nonlinear Dynamics of a Planetary Gear System With Multiple Clearances
,”
Mech. Mach. Theory
,
38
, pp.
1371
1390
.10.1016/S0094-114X(03)00093-4
21.
Al-shyyab
,
A.
, and
Kahraman
,
A. A.
,
2007
, “
Non-Linear Dynamic Model for Planetary Gear Sets
,”
Proc. Inst. Mech. Eng. Part K: J. Multibody Dyn.
,
221
, pp.
567
576
.10.1243/09544070JAUTO439
22.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2007
, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
,
302
, pp.
577
595
.10.1016/j.jsv.2006.11.028
23.
Mark
,
W. D.
,
2009
, “
Stationary Transducer Response to Planetary-Gear Vibration Excitation II: Effects of Torque Modulations
,”
Mech. Syst. Signal Processing
,
23
, pp.
2253
2259
.10.1016/j.ymssp.2009.03.005
24.
Wu
,
X.
,
Meagher
,
J.
, and
Sommer
,
A.
,
2011
, “
A Differential Planetary Gear Model With Backlash and Teeth Damage
,”
Rotating Machinery, Structural Health Monitoring, Shock and Vibration, Vol. 5, Conference Proceedings of the Society for Experimental Mechanics Series
,
Springer
,
New York
.
25.
Yesilyurt
,
I.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2003
, “
Gear Tooth Stiffness Reduction Measurement Using Modal Analysis and Its Use in Wear Fault Severity Assessment of Spur Gears
,”
NDT&E Int.
,
36
, pp.
357
372
.10.1016/S0963-8695(03)00011-2
26.
Chaari
,
F.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2006
, “
Dynamic Analysis of a Planetary Gear Failure Caused by Tooth Pitting and Cracking
,”
J. Failure Anal. Prev.
,
2
, pp.
73
78
.10.1361/154770206X99343
27.
Lewicki
,
D. G.
, and
Ballarini
,
R.
,
1996
, “
Effect of Rim Thickness on Gear Crack Propagation Path
,” NASA Technical Memorandum 107229, Army Research Laboratory, Tech. Report No. ARL-TR-1110.
28.
Lewicki
,
D. G.
, and
Ballarini
,
R.
,
1996
, “
Gear Crack Propagation Investigations
,” NASA Technical Memorandum 107147, Army Research Laboratory, Tech. Report No. ARL-TR-957.
29.
Lewicki
,
D. G.
,
Spievak
,
L. E.
, and
Wawrzynek
,
P. A.
,
2000
, “
Consideration of Moving Tooth Load in Gear Crack Propagation Predictions
,” NASA Report No. NASA/TM-2000-210227.
30.
Lewicki
,
D. G.
,
2001
, “
Gear Crack Propagation Path Studies—Guidelines for Ultra-Safe Design
,” NASA Report No. NASA/TM-2001-211073, ARL-TR-2468.
31.
Lewicki
,
D. G.
,
2001
, “
Effect of Speed (Centrifugal Load) on Gear Crack Propagation Direction
,” NASA Report No. NASA/TM-2001-211117, ARL-TR-1314.
32.
Spievak
,
L. E.
,
Wawrzynek
,
P. A.
, and
Ingraffea
,
A. R.
,
2000
, “
Simulating Fatigue Crack Growth in Spiral Bevel Gears
,” NASA Report No. NASA/CR-2000-210062, ARL-CR-451.
33.
Decker
,
H. J.
,
2002
, “
Crack Detection for Aerospace Quality Spur Gears
,” NASA Report No. NASA/TM-2002-211492, ARL-TR-2682.
34.
Ural
,
A.
,
Wawrzynek
,
P. A.
, and
Ingraffea
,
A. R.
,
2003
, “
Simulating Fatigue Crack Growth in Spiral Bevel Pinion
,” NASA Report No. NASA/CR-2003-212529, ARL-CR-0531.
35.
Chen
,
Z.
, and
Shao
,
Y.
,
2011
, “
Dynamic Simulation of Spur Gear With Tooth Root Crack Propagating Along Tooth Width and Crack Depth
,”
Eng. Failure Anal.
,
18
(
8
), pp.
2149
2164
.10.1016/j.engfailanal.2011.07.006
36.
Yuksel
,
C.
, and
Kahraman
,
A.
,
2004
, “
Dynamic Tooth Loads of Planetary Gear Sets Having Tooth Profile Wear
,”
Mech. Mach. Theory
,
39
, pp.
695
715
.10.1016/j.mechmachtheory.2004.03.001
37.
Sparis
,
P.
, and
Vachtsevanos
,
G.
,
2005
, “
A Helicopter Planetary Gear Carrier Plate Crack Analysis and Feature Extraction Based on Ground and Aircraft Data
,”
Proceedings of the 2005 IEEE International Symposium on Intelligent Control, Limassol
, Cyprus, Greece, June 27–29, pp.
646
651
.10.1109/.2005.1467090
38.
Park
,
S.
,
Lee
,
J.
,
Moon
,
U.
, and
Kim
,
D.
,
2010
, “
Failure Analysis of a Planetary Gear Carrier of 1200HP Transmission
,”
Eng. Failure Anal.
,
17
, pp.
521
529
.10.1016/j.engfailanal.2009.10.001
39.
Dhanasekaran
,
R.
,
Kumar
,
P. S.
, and
Santhi
,
K.
,
2010
, “
Crack Failure of Planetary Gearbox Sun Gear
,”
Int. J. Recent Trends Eng. Technol.
,
3
(
6
), pp.
12
14
.01.IJRTET.03.06.137
40.
Sommer
,
A. P.
,
2011
, “
Vibration-Based Health Monitoring of Multiple-Stage Gear Train and Differential Planetary Transmission Involving Teeth Damage
,” M.S. thesis, California Polytechnic State University, San Luis Obispo, CA.
41.
Savage
,
M.
,
Rubadeux
,
K. L.
, and
Coe
,
H. H.
,
1996
, “
Effects of Planetary Gear Ratio on Mean Service Life
,” NASA Report No. NASA/TM-1996-107275, ARL-TR-1150.
42.
Henderson
,
J. M.
, and
Faustini
,
K. A.
,
1989
, “
Graphical Aid for Planetary Gear Train Design
,”
Mech. Mach. Theory
,
24
(
2
), pp.
83
85
.10.1016/0094-114X(89)90013-X
43.
Wu
,
S.
,
Zuo
,
M. J.
, and
Parey
,
A.
,
2008
, “
Simulation of Spur Gear Dynamics and Estimation of Fault Growth
,”
J. Sound Vib.
,
317
, pp.
608
624
.10.1016/j.jsv.2008.03.038
44.
Tian
,
X. H.
,
2004
, “
Dynamic Simulation for System Response of Gearbox Including Localized Gear Faults
,” M.S. thesis, University of Alberta, Edmonton, Alberta, Canada.
45.
Chaari
,
F.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2009
, “
Analytical Modelling of Spur Gear Tooth Crack and Influence on Gear Mesh Stiffness
,”
Eur. J. Mech. A/Solids
,
28
, pp.
461
468
.10.1016/j.euromechsol.2008.07.007
46.
Yang
,
D. C. H.
, and
Su
,
Z. S.
,
1985
, “
A Rotary Model for Spur Gear Dynamics
,”
ASME J. Mech. Trans.
,
107
, pp.
529
535
.10.1115/1.3260759
47.
Chaari
,
F.
,
Baccar
,
W.
, and
Abbes
,
M. S.
, and
Haddar
,
M.
,
2008
, “
Effect of Spalling or Tooth Breakage on Gear Mesh Stiffness and Dynamic Response of a One-Stage Spur Gear Transmission
,”
Eur. J. Mech. A/Solids
,
27
, pp.
691
705
.10.1016/j.euromechsol.2007.11.005
48.
Wang
,
J.
,
2003
, “
Numerical and Experimental Analysis of Spur Gears in Mesh
,” Ph.D. thesis, Curtin University of Technology, Perth, Australia.
49.
Li
,
C. J.
, and
Lee
,
H.
,
2005
, “
Gear Fatigue Crack Prognosis Using Embedded-Dynamic-Fracture Model, Gear Dynamic Model and Fracture Mechanics
,”
Mech. Syst. Signal Process.
,
19
, pp.
836
846
.10.1016/j.ymssp.2004.06.007
50.
Sainsot
,
P.
,
Velex
,
P.
, and
Duverger
,
O.
,
2004
, “
Contribution of Gear Body to Tooth Deflections—A New Bidimensional Analytical Formula
,”
ASME J. Mech. Des.
,
126
, pp.
748
752
.10.1115/1.1758252
51.
Lebold
,
M.
,
McClintic
,
K.
,
Campbell
,
R.
,
Byington
,
C.
, and
Maynard
,
K.
,
2000
, “
Review of Vibration Analysis Methods for Gearbox Diagnostics and Prognostics
,”
Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology
, Virginia Beach, VA, May 1–4, pp.
623
634
.
52.
Dron
,
J. P.
,
Bolaers
,
F.
, and
Rasolofondraibe
,
I.
,
2004
, “
Improvement of the Sensitivity of the Scalar Indicators (Crest Factor, Kurtosis) Using a Denoising Method by Spectral Substraction: Application to the Detection of Defects in Ball Bearings
,”
J. Sound Vib.
,
270
(
1–2
), pp.
61
73
.10.1016/S0022-460X(03)00483-8
53.
Shao
,
Y.
,
Liang
,
J.
,
Gu
,
F.
,
Chen
,
Z.
, and
Ball
,
A.
,
2011
, “
Fault Prognosis and Diagnosis of an Automotive Rear Axle Gear Using a RBF-BP Neural Network
,”
J. Phys.: Conf. Ser.
,
305
, p.
012063
.10.1088/1742-6596/305/1/012063
54.
Vecer
,
P.
,
Kreidl
,
M.
, and
Smid
,
R.
,
2005
, “
Condition Indicators for Gearbox Condition Monitoring Systems
,”
Acta Polytech.
,
45
(
6
), pp.
35
43
.
You do not currently have access to this content.