Numerical simulation of vibration control of a submerged stiffened cylindrical structure with active vibration isolators is presented. Vibration transmission from vibrating machinery to the cylindrical structure through the active vibration isolators is analyzed by a numerical model synthesized from frequency response functions (FRFs) and impedances. The coupled finite element/boundary element (FE/BE) method is employed to study the vibro-acoustic behavior of the fluid-loaded cylindrical structure. Sound pressure in the far-field is calculated in terms of the pressure and normal acceleration of the outer surface of the cylindrical shell. An adaptive multichannel control based on the filtered-x least mean squares (FxLMS) algorithm is used in the active vibration isolation. Simulation results have demonstrated that suppression of vibration of the four elastic foundations attached to the cylindrical shell will reduce the spatial-average mean-square velocity and the instantaneous radiated power of the cylindrical shell. As a result, suppression of vibration of the foundations leads to attenuation of sound radiation in the far-field induced by the radial displacement dominant mode of the shell. Moreover, vibration suppression is greatly influenced by the strong couplings among control channels. According to these results, it can be concluded that the proposed method is effective in the analysis of underwater sound radiation control of cylindrical structures.

References

1.
Junger
,
M.
, and
Feit
,
D.
, 1986,
Sound, Structures, and Their Interaction
,
MIT Press
,
London
.
2.
Burroughs
,
C.
, 1984, “
Acoustic Radiation From Fluid-Loaded Infinite Circular Cylinders With Doubly Periodic Ring Supports
,”
J. Acoust. Soc. Am.
,
75
(
3
), pp.
715
722
.
3.
Harari
,
A.
, and
Sandman
,
B.
, 1990, “
Radiation and Vibrational Properties of Submerged Stiffened Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
88
(
4
), pp.
1817
1830
.
4.
Laulagnet
,
B.
, and
Guyader
,
J.
, 1990, “
Sound Radiation by Finite Cylindrical Ring Stiffened Shells
,”
J. Sound Vib.
,
138
(
2
), pp.
173
191
.
5.
Merz
,
S.
,
Oberst
,
S.
,
Dylejko
,
P.
,
Kessissoglou
,
N.
,
Tso
,
Y.
, and
Marburg
,
S.
, 2007, “
Development of Coupled Fe/Be Models to Investigate the Structural and Acoustic Responses of a Submerged Vessel
,”
J. Comput. Acoust.
,
15
(
1
), pp.
23
48
.
6.
Merz
,
S.
,
Kinns
,
R.
, and
Kessissoglou
,
N.
, 2009, “
Structural and Acoustic Responses of a Submarine Hull Due to Propeller Forces
,”
J. Sound Vib.
,
325
(
1–2
), pp.
266
286
.
7.
Caresta
,
M.
, and
Kessissoglou
,
N.
, 2009, “
Structural and Acoustic Responses of a Fluid-Loaded Cylindrical Hull With Structural Discontinuities
,”
Appl. Acoust.
,
70
(
7
), pp.
954
963
.
8.
Caresta
,
M.
, and
Kessissoglou
,
N.
, 2009, “
Acoustic Signature of a Submarine Hull Under Harmonic Excitation
,”
Appl. Acoust.
,
71
(
1
), pp.
17
31
.
9.
Maxit
,
L.
, and
Ginoux
,
J.
, 2010, “
Prediction of the Vibro-Acoustic Behavior of a Submerged Shell Non Periodically Stiffened by Internal Frames
,”
J. Acoust. Soc. Am.
,
128
(
1
), pp.
137
151
.
10.
Yan
,
J.
,
Li
,
T.
,
Liu
,
T.
, and
Liu
,
J.
, 2006, “
Characteristics of the Vibrational Power Flow Propagation in a Submerged Periodic Ring-Stiffened Cylindrical Shell
,”
Appl. Acoust.
,
67
(
6
), pp.
550
569
.
11.
Everstine
,
G.
, 1991, “
Prediction of Low Frequency Vibrational Frequencies of Submerged Structures
,”
ASME J. Vibr. Acoust.
,
113
, pp.
187
191
.
12.
Liu
,
C.
, and
Chen
,
P.
, 2009, “
Numerical Analysis of Immersed Finite Cylindrical Shells Using a Coupled Bem/Fem and Spatial Spectrum Approach
,”
Appl. Acoust.
,
70
(
2
), pp.
256
266
.
13.
Chen
,
P. T.
, 2001, “
Acoustic Radiations for Submerged Elastic Structures Using Natural Mode Expansions in Conjunction With Radiation Modes Approach
,”
J. Sound Vib.
,
246
(
2
), pp.
245
263
.
14.
Everstine
,
G. C.
, 1997, “
Finite Element Formulatons of Structural Acoustics Problems
,”
Comput. Struct.
,
65
(
3
), pp.
307
321
.
15.
Bjarnason
,
J.
,
Achenbach
,
J.
, and
Igusa
,
T.
, 1992, “
Acoustic Radiation From a Cylindrical Shell With an Internal Plate
,”
Wave Motion
,
15
(
1
), pp.
23
41
.
16.
Guo
,
Y.
, 1996, “
Acoustic Radiation From Cylindrical Shells Due to Internal Forcing
,”
J. Acoust. Soc. Am.
,
99
(
3
), pp.
1495
1505
.
17.
Daley
,
S.
,
Johnson
,
F. A.
,
Pearson
,
J. B.
, and
Dixon
,
R.
, 2004, “
Active Vibration Control for Marine Applications
,”
Control Eng. Pract.
,
12
(
4
), pp.
465
474
.
18.
Pan
,
X.
,
Tso
,
Y.
, and
Juniper
,
R.
, 2008, “
Active Control of Low-Frequency Hull-Radiated Noise
,”
J. Sound Vib.
,
313
(
1–2
), pp.
29
45
.
19.
Pan
,
X.
,
Tso
,
Y.
, and
Juniper
,
R.
, 2008, “
Active Control of Radiated Pressure of a Submarine Hull
,”
J. Sound Vib.
,
311
(
1–2
), pp.
224
242
.
20.
Caresta
,
M.
, 2011, “
Active Control of Sound Radiated by a Submarine in Bending Vibration
,”
J. Sound Vib.
,
330
(
4
), pp.
615
624
.
21.
Niu
,
J.
,
Song
,
K.
, and
Lim
,
C.
, 2005, “
On Active Vibration Isolation of Floating Raft System
,”
J. Sound Vib.
,
285
(
1–2
), pp.
391
406
.
22.
Gardonio
,
P.
,
Elliott
,
S.
, and
Pinnington
,
R.
, 1997, “
Active Isolation of Structural Vibration on a Multiple-Degree-of-Freedom System, Part I: The Dynamics of the System
,”
J. Sound Vib.
,
207
(
1
), pp.
61
93
.
23.
Gardonio
,
P.
,
Elliott
,
S.
, and
Pinnington
,
R.
, 1997, “
Active Isolation of Structural Vibration on a Multiple-Degree-of-Freedom System, Part II: Effectiveness of Active Control Strategies
,”
J. Sound Vib.
,
207
(
1
), pp.
95
121
.
24.
Howard
,
C.
,
Hansen
,
C.
, and
Pan
,
J.
, 1997, “
Power Transmission From a Vibrating Body to a Circular Cylindrical Shell Through Passive and Active Isolators
,”
J. Acoust. Soc. Am.
,
101
(
3
), pp.
1479
1491
.
25.
Serrand
,
M.
, and
Elliott
,
S.
, 2000, “
Multichannel Feedback Control for the Isolation of Base-Excited Vibration
,”
J. Sound Vib.
,
234
(
4
), pp.
681
704
.
26.
Huang
,
X.
,
Elliott
,
S.
, and
Brennan
,
M.
, 2003, “
Active Isolation of a Flexible Structure From Base Vibration
,”
J. Sound Vib.
,
263
(
2
), pp.
357
376
.
27.
Brennan
,
M.
,
Elliott
,
S.
, and
Huang
,
X.
, 2006, “
A Demonstration of Active Vibration Isolation Using Decentralized Velocity Feedback Control
,”
Smart Mater. Struct.
,
15
(
1
), pp.
N19
N22
.
28.
Kim
,
S.
,
Elliott
,
S.
, and
Brennan
,
M.
, 2001, “
Decentralized Control for Multichannel Active Vibration Isolation
,”
IEEE Trans. Contr. Syst. T.
,
9
(
1
), pp.
93
100
.
29.
Zhang
,
Z.
,
Chen
,
Y.
,
Yin
,
X.
, and
Hua
,
H.
, 2008, “
Active Vibration Isolation and Underwater Sound Radiation Control
,”
J. Sound Vib.
,
318
(
4–5
), pp.
725
736
.
30.
Zhang
,
Z.
,
Huang
,
X.
,
Chen
,
Y.
, and
Hua
,
H.
, 2009, “
Underwater Sound Radiation Control by Active Vibration Isolation: An Experiment
,”
Proc. IMechE
, Part M,
223
(
4
), pp.
503
515
.
31.
Zhang
,
Z.
,
Hu
,
F.
, and
Hua
,
H.
, 2010, “
Simulation and Experiment on Active Vibration Isolation With an Adaptive Method,” Proc. IMechE
,
Part M
,
224
(
3
), pp.
225
238
.
32.
Liu
,
W.
, and
Ewins
,
D.
, 2002, “
Substructure Synthesis Via Elastic Media
,”
J. Sound Vib.
,
257
(
2
), pp.
361
379
.
33.
Everstine
,
G.
, and
Henderson
,
F.
, 1990, “
Coupled Finite Element/Boundary Element Approach for Fluid–Structure Interaction
,”
J. Acoust. Soc. Am.
,
87
(
5
), pp.
1938
1947
.
34.
Mazeaud
,
B.
, and
Galland
,
M.
, 2007, “
A Multi-Channel Feedback Algorithm for the Development of Active Liners to Reduce Noise in Flow Duct Applications
,”
Mech. Syst. Signal Process.
,
21
(
7
), pp.
2880
2899
.
35.
Kim
,
S.
, and
Park
,
Y.
, 1999, “
Active Control of Multi-Tonal Noise With Reference Generator Based on on-Line Frequency Estimation
,”
J. Sound Vib.
,
227
(
3
), pp.
647
666
.
36.
Zhang
,
Z.
,
Wang
,
J.
,
Zhou
,
J.
, and
Hua
,
H.
, 2009, “
Adaptive Vibration Control With Tracking Filters
,”
J. Vib. Shock
,
28
(
002
), pp.
64
67
.
37.
Hibbitt
,
K.
, 2000,
Abaqus/Standard User’s Manual
,
Sorensen, Inc
., Pawtucket, Rhode Island, USA.
38.
Fahy
,
F.
, and
Gardonio
,
P.
, 2007,
Sound and Structural Vibration: Radiation, Transmission and Response
,
Academic Press
,
New York.
You do not currently have access to this content.