Prediction of the vibration response due to defects on rolling element bearings requires having an accurate representative vibration model. In this paper, a new model for vibration generation in the rolling element bearings has been introduced. The proposed model assumes a stochastic source of vibration excitation, which is produced as a result of metallic contact between bearing elements during rolling. This model explains high frequency vibration in the acceleration spectrum clearly. When a defect grows in the bearing, the roughness of the contacting surfaces increases locally and stochastic excitation becomes stronger in the defective area. The increased vibration level at the defective area is a good indicator of bearing faults. A numerical simulation of the proposed model was validated with experimental results.

1.
Tandon
,
N.
, and
Choudhury
,
A.
, 1999, “
A Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
0301-679X,
32
(
8
), pp.
469
480
.
2.
McFadden
,
P. D.
, and
Smith
,
J. D.
, 1984, “
Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
0022-460X,
96
(
1
), pp.
69
82
.
3.
McFadden
,
P. D.
, and
Smith
,
J. D.
, 1985, “
The Vibration Produced by Multiple Point Defects in a Rolling Element Bearing
,”
J. Sound Vib.
0022-460X,
98
(
2
), pp.
263
273
.
4.
Sunnersjo
,
C. S.
, 1978, “
Varying Compliance Vibrations of Rolling Bearings
,”
J. Sound Vib.
0022-460X,
58
(
3
), pp.
363
373
.
5.
Sayles
,
R. S.
, and
Poon
,
S. Y.
, 1981, “
Surface Topography and Rolling Element Vibration
,”
Precis. Eng.
0141-6359,
3
, pp.
137
144
.
6.
Wardle
,
F. P.
, 1988, “
Vibration Forces Produced by Waviness of the Rolling Surfaces of Thrust Loaded Ball Bearings Part 1: Theory
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
202
(
C5
), pp.
305
312
.
7.
Wardle
,
F. P.
, 1988, “
Vibration Forces Produced by Waviness of the Rolling Surfaces of Thrust Loaded Ball Bearings Part 2: Experimental Validation
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
202
(
C5
), pp.
313
319
.
8.
Cao
,
M.
, and
Xiao
,
J.
, 2008, “
A Comprehensive Dynamic Model of Double-Row Spherical Roller Bearing-Model Development and Case Studies on Surface Defects, Preloads and Radial Clearance
,”
Mech. Syst. Signal Process.
0888-3270,
22
, pp.
467
489
.
9.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
, 2004, “
Nonlinear Dynamic Behaviors of Rolling Element Bearings Due to Surface Waviness
,”
J. Sound Vib.
0022-460X,
272
, pp.
557
580
.
10.
Yhland
,
E.
, 1992, “
A Linear Theory of Vibrations Caused by Ball Bearings With Form Errors Operating at Moderate Speed
,”
Trans. ASME, J. Tribol.
0742-4787,
114
, pp.
348
359
.
11.
Antoni
,
J.
, 2007, “
Cyclic Spectral Analysis of Rolling-Element Bearing Signals: Facts and Fictions
,”
J. Sound Vib.
0022-460X,
304
, pp.
497
529
.
12.
Junsheng
,
C.
,
Dejie
,
Y.
, and
Yu
,
Y.
, 2007, “
Application of an Impulse Response Wavelet to Fault Diagnosis of Rolling Bearings
,”
Mech. Syst. Signal Process.
0888-3270,
21
, pp.
920
929
.
13.
Liu
,
C. R.
, and
Choi
,
Y.
, 2008, “
A New Methodology for Predicting Crack Initiation Life for Rolling Contact Fatigue Based on Dislocation and Crack Propagation
,”
Int. J. Mech. Sci.
0020-7403,
50
(
2
), pp.
117
123
.
14.
Sawalhi
,
N.
,
Randall
,
R. B.
, and
Endo
,
H.
, 2007, “
The Enhancement of Fault Detection and Diagnosis in Rolling Element Bearings Using Minimum Entropy Deconvolution Combined With Spectral Kurtosis
,”
Mech. Syst. Signal Process.
0888-3270,
21
, pp.
2616
2636
.
15.
Behzad
,
M.
,
Halaj
,
A.
,
Bastami
,
A. R.
,
Mba
,
D.
,
Eftekharnejad
,
A.
, and
Charnley
,
B.
, 2009, “
Defect Size Estimation in Rolling Element Bearings Using Vibration Time Waveform
,”
Insight
1060-135X,
51
(
8
), pp.
426
430
.
16.
McFadden
,
P. D.
, and
Smith
,
J. D.
, 1984, “
Vibration Monitoring of Rolling Element Bearings by the High-Frequency Resonance Technique—A Review
,”
Tribol. Int.
0301-679X,
17
(
1
), pp.
3
10
.
17.
Feldmann
,
J.
, 2002, “
Point Distributed Static Load of a Rough Elastic Contact Can Cause Broadband Vibrations During Rolling
,”
Mech. Syst. Signal Process.
0888-3270,
16
(
2–3
), pp.
285
302
.
18.
Behzad
,
M.
, and
Bastami
,
A. R.
, 2009, “
A Model for Vibration Generation in the Rolling Element Bearings
,”
Proceedings of COMADEM: Condition Monitoring and Diagnostic Engineering Management
, 9-11 June 2009, San Sebastian, Spain.
19.
Ho
,
D.
, and
Randall
,
R. B.
, 2000, “
Optimization of Bearing Diagnostic Techniques Using Simulated and Actual Bearing Fault Signals
,”
Mech. Syst. Signal Process.
0888-3270,
14
(
5
), pp.
763
788
.
20.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
21.
Lo
,
C. C.
, 1969, “
Elastic Contact of Rough Cylinders
,”
Int. J. Mech. Sci.
0020-7403,
11
, pp.
105
115
.
22.
Mccool
,
J. I.
, 1986, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
0043-1648,
107
, pp.
37
60
.
23.
Papoulis
,
A.
, 1991,
Probability, Random Variables, and Stochastic Processes
,
McGraw-Hill
,
New York
.
24.
Stolarski
,
T. A.
, and
Tobe
,
S.
, 2000,
Rolling Contacts
,
Professional Engineering
,
Suffolk, UK
.
25.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
, 2007,
Essential Concepts of Bearing Technology
,
Taylor & Francis
,
London
.
26.
Harris
,
C. M.
, and
Piersol
,
A. G.
, 2002,
Shock and Vibration Handbook
,
McGraw-Hill
,
New York
.
27.
Soedel
,
W.
, 2005,
Vibration of Shells and Plates
,
Dekker
,
New York
.
28.
Wijnant
,
Y. H.
,
Wensinj
,
J. A.
, and
Nijen
,
G. C.
, 1999, “
The Influence of Lubrication on the Dynamic Behavior of Ball Bearings
,”
J. Sound Vib.
0022-460X,
222
(
4
), pp.
579
596
.
29.
Harris
,
T. A.
, 1984,
Rolling Bearing Analysis
,
Wiley
,
New York
.
You do not currently have access to this content.