Various mathematical beam models have been proposed for the efficient analysis of a piezoelectric energy harvester (PEH) and carrying out parameter study but there appears no beam model suitable for a PEH of a moderate width-to-length aspect ratio with a distributed tip mass, and so, moderate width-to-length aspect ratios and distribution effects of a tip mass over a finite length will be mainly focused on in the present beam analysis. To deal with a wide range of aspect ratios, the material coefficients appearing in the constitutive equations of a PEH beam will be interpolated by those of the limiting plane-strain and plane-stress conditions. The key idea in the interpolation is to derive the interpolation parameter analytically by using the fundamental frequency of a cantilevered beam of moderate aspect ratios. To deal with the distribution effects of a tip mass over a finite length, the use of a set of polynomial deflection shape functions is proposed in the assumed mode approach. The equations to predict the electrical outputs based on the proposed enhanced beam model are explicitly expressed in template forms, so one can calculate the outputs easily from the forms. The validity and accuracy were checked for unimorph and bimorph PEHs by comparing the results from the developed beam model, the conventional beam model, and a three-dimensional finite element model. The comparisons showed substantial improvements by the developed model in predicting the electrical outputs.

1.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
, 2003, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
0140-3664,
26
, pp.
1131
1144
.
2.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
, 2004, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
0583-1024,
36
, pp.
197
205
.
3.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
, 2006, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
0957-0233,
17
, pp.
R175
R195
.
4.
Stephen
,
N. G.
, 2006, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
0022-460X,
293
, pp.
409
425
.
5.
Anton
,
S. R.
, and
Sodano
,
H. A.
, 2007, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
R1
R21
.
6.
Cook-Chennault
,
K. A.
,
Thambi
,
N.
, and
Sastry
,
A. M.
, 2008, “
Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems With Special Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
0964-1726,
17
, p.
043001
.
7.
Hudak
,
N. S.
, and
Amatucci
,
G. G.
, 2008, “
Small-Scale Energy Harvesting Through Thermoelectric, Vibration, and Radiofrequency Power Conversion
,”
J. Appl. Phys.
0021-8979,
103
, p.
101301
.
8.
Priya
,
S.
, and
Inman
,
D. J.
, 2009,
Energy Harvesting Technologies
,
Springer
,
New York
.
9.
Glynne-Jones
,
P.
,
Tudor
,
M. J.
,
Beeby
,
S. P.
, and
White
,
N. M.
, 2004, “
An Electromagnetic, Vibration-Powered Generator for Intelligent Sensor Systems
,”
Sens. Actuators, A
0924-4247,
110
, pp.
344
349
.
10.
Mitcheson
,
P. D.
,
Miao
,
P.
,
Stark
,
B. H.
,
Yeatman
,
E. M.
,
Holmes
,
A. S.
, and
Green
,
T. C.
, 2004, “
MEMS Electrostatic Micropower Generator for Low Frequency Operation
,”
Sens. Actuators, A
0924-4247,
115
, pp.
523
529
.
11.
Wang
,
L.
, and
Yuan
,
F. G.
, 2008, “
Vibration Energy Harvesting by Magnetostrictive Material
,”
Smart Mater. Struct.
0964-1726,
17
, p.
045009
.
12.
Roundy
,
S.
, and
Wright
,
P. K.
, 2004, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
1131
1142
.
13.
Lu
,
F.
,
Lee
,
H. P.
, and
Lim
,
S. P.
, 2004, “
Modeling and Analysis of Micro Piezoelectric Power Generators for Micro-Electromechanical-Systems Applications
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
57
63
.
14.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
, 2004, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
Strain
,
40
, pp.
49
58
.
15.
Wilhelm
,
J.
, and
Rajamani
,
R.
, 2009, “
Methods for Multimodal Vibration Suppression and Energy Harvesting Using Piezoelectric Actuators
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, p.
011001
.
16.
Dutoit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S. -G.
, 2005, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
1058-4587,
71
, pp.
121
160
.
17.
Chen
,
S. -N.
,
Wang
,
G. -J.
, and
Chien
,
M. -C.
, 2006, “
Analytical Modeling of Piezoelectric Vibration-Induced Micro Power Generator
,”
Mechatronics
0957-4158,
16
, pp.
379
387
.
18.
Shu
,
Y. C.
, and
Lien
,
I. C.
, 2006, “
Analysis of Power Output for Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
1499
1512
.
19.
Lin
,
J. H.
,
Wu
,
X. M.
,
Ren
,
T. L.
, and
Liu
,
L. T.
, 2007, “
Modeling and Simulation of Piezoelectric MEMS Energy Harvesting Device
,”
Integr. Ferroelectr.
1058-4587,
95
, pp.
128
141
.
20.
Erturk
,
A.
, and
Inman
,
D. J.
, 2009, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
0964-1726,
18
, p.
025009
.
21.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, p.
041002
.
22.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008, “
Issues in Mathematical Modeling of Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
0964-1726,
17
, p.
065016
.
23.
Goldschmidtboeing
,
F.
, and
Woias
,
P.
, 2008, “
Characterization of Different Beam Shapes for Piezoelectric Energy Harvesting
,”
J. Micromech. Microeng.
0960-1317,
18
, p.
104013
.
24.
Erturk
,
A.
,
Tarazaga
,
P. A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
, 2009, “
Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, p.
011010
.
25.
Benjeddou
,
A.
,
Trindade
,
M. A.
, and
Ohayon
,
R.
, 1997, “
A Unified Beam Finite Element Model for Extension and Shear Piezoelectric Actuation Mechanisms
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
, pp.
1012
1025
.
26.
DeVoe
,
D. L.
, and
Pisano
,
A. P.
, 1997, “
Modeling and Optimal Design of Piezoelectric Cantilever Microactuators
,”
J. Microelectromech. Syst.
1057-7157,
6
, pp.
266
270
.
27.
Weinberg
,
M. S.
, 1999, “
Working Equations for Piezoelectric Actuators and Sensors
,”
J. Microelectromech. Syst.
1057-7157,
8
, pp.
529
533
.
28.
Tadmor
,
E. B.
, and
Kósa
,
G.
, 2003, “
Electromechanical Coupling Correction for Piezoelectric Layered Beams
,”
J. Microelectromech. Syst.
1057-7157,
12
, pp.
899
906
.
29.
De Marqui
,
C. D.
, Jr.
,
Erturk
,
A.
, and
Inman
,
D. J.
, 2009, “
An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates
,”
J. Sound Vib.
0022-460X,
327
, pp.
9
25
.
30.
Looker
,
J. R.
, and
Sader
,
J. E.
, 2008, “
Flexural Resonant Frequencies of Thin Rectangular Cantilever Plates
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
011007
.
31.
Preumont
,
A.
, 2006,
Mechatronics-Dynamics of Electromechanical and Piezoelectric Systems
,
Springer
,
Dordrecht, The Netherlands
.
32.
IEEE Standards Board
, 1987,
IEEE Standard on Piezoelectricity
,
IEEE
,
New York
.
33.
Ikeda
,
T.
, 1996,
Fundamentals of Piezoelectricity
,
Oxford University Press
,
New York
.
34.
Blevins
,
R. D.
, 1979,
Formulas for Natural Frequency and Mode Shape
,
Krieger
,
Malabar, FL
.
35.
Cornwell
,
P. J.
,
Goethal
,
J.
,
Kowko
,
J.
, and
Damianakis
,
M.
, 2005, “
Enhancing Power Harvesting Using a Tuned Auxiliary Structure
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
825
834
.
36.
Chang
,
S. J.
,
Rogacheva
,
N. N.
, and
Chou
,
C. C.
, 1995, “
Analysis of Methods for Determining Electromechanical Coupling Coefficients of Piezoelectric Elements
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
42
, pp.
630
640
.
You do not currently have access to this content.