As damping reduction can potentially lead to performance enhancement in certain applications, a scheme based on the concept of piezoelectric circuitry that yields reduced damping effect in a structural system is developed. The piezoelectric circuitry consists of an inductor and a negative resistance circuit serially connected to the piezoelectric transducer that is bonded/embedded to the structure. By using the negative resistance element to reduce the overall resistance of the circuitry to be negative, the resonant vibratory response of the structural system becomes higher while the system remains stable. The stability boundary of the negative resistance is derived for both the ideal piezoelectric transducer model and the transducer model with energy loss. The results are validated via experimental investigations.

1.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
, 1998, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock Vib. Dig.
0583-1024,
30
, pp.
91
105
.
2.
Liang
,
J. R.
, and
Liao
,
W. H.
, 2009, “
Piezoelectric Energy Harvesting and Dissipation on Structural Damping
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
20
, pp.
515
527
.
3.
Ray
,
L. R.
, and
Tian
,
L.
, 1999, “
Damage Detection in Smart Structures Through Sensitivity Enhancing Feedback Control
,”
J. Sound Vib.
0022-460X,
227
, pp.
987
1002
.
4.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
, 2007, “
Optimal Sensitivity-Enhancing Feedback Control via Eigenstructure Assignment for Structural Damage Detection
,”
ASME J. Vibr. Acoust.
0739-3717,
129
, pp.
771
783
.
5.
Humphris
,
A. D. L.
,
Tamayo
,
J.
, and
Miles
,
M. J.
, 2000, “
Active Quality Factor Control in Liquids for Force Spectroscopy
,”
Langmuir
0743-7463,
16
, pp.
7891
7894
.
6.
Ebeling
,
D.
,
Holscher
,
H.
,
Fuchs
,
H.
,
Anczykowski
,
B.
, and
Schwarz
,
U. D.
, 2006, “
Imaging of Biomaterials in Liquids: A Comparison Between Conventional and Q-Controlled Amplitude Modulation (‘Tapping Mode’) Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
17
, pp.
S221
S226
.
7.
Forward
,
R. L.
, 1979, “
Electronic Damping of Vibrations in Optical Structures
,”
Appl. Opt.
0003-6935,
18
, pp.
690
697
.
8.
Hagood
,
N. W.
, and
von Flotow
,
A.
, 1991, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
0022-460X,
146
, pp.
243
268
.
9.
Fleming
,
A. J.
,
Behrens
,
S.
, and
Moheimani
,
S. O. R.
, 2000, “
Synthetic Impedance for Implementation of Piezoelectric Shunt-Damping Circuits
,”
Electron. Lett.
0013-5194,
36
, pp.
1525
1526
.
10.
Liao
,
Y.
, and
Sodano
,
H. A.
, 2010, “
Piezoelectric Damping of Resistively Shunted Beams and Optimal Parameters for Maximum Damping
,”
ASME J. Vibr. Acoust.
0739-3717,
132
, p.
041014
.
11.
Wang
,
K. W.
, and
Tang
,
J.
, 2008,
Adaptive Structural System With Piezoelectric Transducer Circuitry
,
Springer
,
New York
.
12.
Pardo de Vera
,
C.
, and
Güemes
,
J. A.
, 1998, “
Embedded Self-Sensing Piezoelectric for Damage Detection
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
9
, pp.
876
882
.
13.
Anton
,
S. R.
, and
Sodano
,
H. A.
, 2007, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
R1
R21
.
14.
Tang
,
J.
, and
Wang
,
K. W.
, 2004, “
Vibration Confinement via Optimal Eigenvector Assignment and Piezoelectric Network
,”
ASME J. Vibr. Acoust.
0739-3717,
126
, pp.
27
36
.
15.
Wu
,
T. Y.
, and
Wang
,
K. W.
, 2008, “
Active Vibration Isolation via Simultaneous Left–Right Eigenvector Assignment
,”
Smart Mater. Struct.
0964-1726,
17
, p.
015048
.
16.
Larbi
,
W.
,
Deü
,
J. -F.
,
Ciminello
,
M.
, and
Ohayon
,
R.
, 2010, “
Structural-Acoustic Vibration Reduction Using Switched Shunt Piezoelectric Patches: A Finite Element Analysis
,”
ASME J. Vibr. Acoust.
0739-3717,
132
, p.
051006
.
17.
Hollkamp
,
J. J.
, and
Starchville
,
T. F.
, Jr.
, 1994, “
A Self-Tuning Piezoelectric Vibration Absorber
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
5
, pp.
559
566
.
18.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
, 2006, “
An Enhanced Frequency-Shift Based Damage Identification Method Using Tunable Piezoelectric Transducer Circuitry
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
799
808
.
19.
Morgan
,
R. A.
, and
Wang
,
K. W.
, 2002, “
An Active-Passive Piezoelectric Absorber for Structural Vibration Control Under Harmonic Excitations With Time-Varying Frequency, Part 1: Algorithm Development and Analysis
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
77
83
.
20.
Tang
,
J.
, and
Wang
,
K. W.
, 2001, “
Active-Passive Hybrid Piezoelectric Networks for Vibration Control: Comparisons and Improvement
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
794
806
.
21.
Neubauer
,
M.
,
Oleskiewicz
,
R.
,
Popp
,
K.
, and
Krzyzynski
,
T.
, 2006, “
Optimization of Damping and Absorbing Performance of Shunted Piezo Elements Utilizing Negative Capacitance
,”
J. Sound Vib.
0022-460X,
298
, pp.
84
107
.
22.
Rhyne
,
T. L.
, 1996, “
Computer Optimization of Transducer Transfer Functions Using Constraints on Bandwidth, Ripple, and Loss
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
43
, pp.
1136
1149
.
23.
Mills
,
D. M.
, and
Smith
,
S. W.
, 1999, “
Multi-Layered PZT/Polymer Composites to Increase Signal-to-Noise Ratio and Resolution for Medical Ultrasound Transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
46
, pp.
961
971
.
24.
Krimholtz
,
R.
,
Leedom
,
D. A.
, and
Matthaei
,
G. L.
, 1970, “
New Equivalent Circuit for Elementary Piezoelectric Transducers
,”
Electron. Lett.
0013-5194,
6
, pp.
398
399
.
25.
Zipparo
,
M. J.
,
Shung
,
K. K.
, and
Shrout
,
T. R.
, 1997, “
Piezoceramics for High-Frequency (20 to 100 MHz) Single-Element Imaging Transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
44
, pp.
1038
1048
.
26.
Wang
,
X.
, and
Tang
,
J.
, 2010, “
Damage Detection Using Piezoelectric Impedance Approach With Inductive Circuitry
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
21
, pp.
667
676
.
27.
Park
,
C. H.
, 2001, “
On the Circuit Model of Piezoceramics
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
12
, pp.
515
522
.
28.
Peairs
,
D. M.
,
Park
,
G.
, and
Inman
,
D. J.
, 2004, “
Improving Accessibility of the Impedance-Based Structural Health Monitoring Method
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
15
, pp.
129
139
.
You do not currently have access to this content.