The exact free vibration analysis of stress free or rigidly fixed, thermally insulated/isothermal, transradially (spherically) isotropic thermoelastic solid sphere has been presented in context of nonclassical thermoelasticity. The transradially isotropic is also frequently referred as spherically isotropic in the literature. The basic governing equations of linear generalized thermoelastic, transradially isotropic, sphere have been uncoupled and simplified with the help of Helmholtz decomposition theorem. The formal solution of the coupled system of partial differential equations has been obtained by employing matrix Fröbenius method of extended series. The secular equations for the existence of possible modes of vibrations in the sphere have been derived by employing boundary conditions. The special cases of spheroidal (S-mode) and toroidal (T-mode) vibrations have also been deduced and discussed. It is found that the toroidal motion gets decoupled from the spheroidal one and remains independent of thermal variations and thermal relaxation time. In order to illustrate the analytical development, the numerical solution of secular equations for spheroidal motion (S-mode) is carried out with respect of magnesium and solid helium spheres. The lowest frequency and damping factor of vibrational modes have been computed with the help of MATLAB programming and the results are presented graphically. The study may find applications in aerospace, navigation, geophysics tribology, and other industries where spherical structures are in frequent use.

1.
Nowacki
,
W.
, 1975,
Dynamic Problem of Thermoelasticity
,
Noordhoff
,
Leyden, The Netherlands
.
2.
Lord
,
H. W.
, and
Shulman
,
Y.
, 1967, “
The Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
0022-5096,
15
, pp.
299
309
.
3.
Green
,
A. E.
, and
Lindsay
,
K. A.
, 1972, “
Thermoelasticity
,”
J. Elast.
0374-3535,
2
, pp.
1
7
.
4.
Dhaliwal
,
R. S.
, and
Sherief
,
H. H.
, 1980, “
Generalized Thermoelasticity for Anisotropic Media
,”
Q. Appl. Math.
0033-569X,
38
, pp.
1
8
.
5.
Chandrasekharaiah
,
D. S.
, 1986, “
Thermoelasticity With Second Sound—A Review
,”
Appl. Mech. Rev.
0003-6900,
39
, pp.
355
376
.
6.
Ackerman
,
C. C.
,
Bentman
,
B.
,
Fairbank
,
H. A.
, and
Krumhansal
,
R. A.
, 1966, “
Second Sound in Helium
,”
Phys. Rev. Lett.
0031-9007,
16
, pp.
789
791
.
7.
Ghosh
,
M. K.
, and
Kanoria
,
M.
, 2008, “
Generalised Thermoelastic Functionally Graded Spherically Isotropic Solid Containing a Spherical Cavity Under Thermal Shock
,”
J. Appl. Math. Mech.
0021-8928,
29
, pp.
1263
1278
.
8.
Sharma
,
J. N.
, and
Sidhu
,
R. S.
, 1986, “
On the Propagation of Plane Harmonic Waves in Anisotropic Generalized Thermoelasticity
,”
Int. J. Eng. Sci.
0020-7225,
24
, pp.
1511
1516
.
9.
Sharma
,
J. N.
, and
Sharma
,
P. K.
, 2002, “
Free Vibration Analysis of Homogeneous Transversely Isotropic Thermoelastic Cylindrical Panel
,”
J. Therm. Stresses
0149-5739,
25
, pp.
169
182
.
10.
Montagner
,
J. P.
, and
Anderson
,
D. L.
, 1989,
Constrained Ref. Mantle Model. Phys Earth Planet Inter.
,
58
, pp.
205
227
.
11.
Schafbuch
,
P. J.
,
Rizzo
,
F. J.
, and
Thompson
,
R. B.
, 1992, “
Eigen Frequencies of Elastic Sphere With Fixed Boundary Conditions
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
458
459
.
12.
Chen
,
W. Q.
, 1996, “
Couples Free Vibrations of Spherically Isotropic Hollow Spheres
,” Ph.D. thesis, Zhejiang University, Hangzhon, China.
13.
Hu
,
H. C.
, 1954, “
On the General Theory of Elasticity for a Spherically Isotropic Medium
,”
Acta Sci. Sin.
0365-7183,
3
, pp.
247
260
.
14.
Chen
,
W. T.
, 1966, “
On Some Problems in Spherically Isotropic Elastic Materials
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
539
546
.
15.
Ding
,
H. J.
, and
Chen
,
W. Q.
, 1996, “
Non Axisymmetric Free Vibrations of a Spherically Isotropic Spherical Shell Embedded in an Elastic Medium
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2575
2590
.
16.
Cohen
,
H.
,
Shah
,
A. H.
, and
Ramakrishna
,
C. V.
, 1972, “
Free Vibrations of a Spherically Isotropic Hollow Sphere
,”
Acustica
0001-7884,
26
, pp.
329
333
.
17.
Chen
,
W. Q.
,
Cai
,
J. B.
,
Ye
,
G. R.
, and
Ding
,
H. J.
, 2000, “
On Eigenfrequencies of an Anisotropic Sphere
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
422
424
.
18.
Lamb
,
H.
, 1881, “
On the Vibrations of an Elastic Sphere
,”
Proc. London Math. Soc.
0024-6115,
s1-13
, pp.
189
212
.
19.
Lapwood
,
E. R.
, and
Usami
,
T.
, 1982,
Free Oscillations of the Earth
,
Cambridge University Press
,
Cambridge, UK
.
20.
Dhaliwal
,
R. S.
, and
Singh
,
A.
, 1980,
Dynamic Coupled Thermoelasticity
,
Hindustan
,
New Delhi
, Chap. 2, p.
14
.
21.
Chadwick
,
P.
, and
Seet
,
L. T. C.
, 1970, “
Wave Propagation in Transversely Isotropic Heat Conducting Elastic Materials
,”
Mathematika
0025-5793,
17
, pp.
255
274
.
22.
Maiti
,
M.
, 1975, “
Stress in Anisotropic Sphere
,”
J. Eng. Mech.
0733-9399,
101
, pp.
101
108
.
23.
Chau
,
K. T.
, 1998, “
Toroidal Vibrations of Anisotropic Spheres With Spherical Isotropy
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
59
65
.
24.
Neuringer
,
J. L.
, 1978, “
The Frobenius Method for Complex Roots of the Indicial Equation
,”
Int. J. Math. Educ. Sci. Technol.
0020-739X,
9
, pp.
71
77
.
25.
Sharma
,
J. N.
,
Kumar
,
V.
, and
Sud
,
S. P.
, 2000, “
Plane Harmonic Waves in Orthorhombic Thermoelastic Materials
,”
J. Acoust. Soc. Am.
0001-4966,
107
, pp.
293
305
.
26.
Love
,
A. E. H.
, 1994,
A Treatise on the Mathematical Theory of Elasticity
,
Dover
,
New York
.
You do not currently have access to this content.