Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a cantilevered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions.

1.
Langelaan
,
J. W.
, 2007, “
Long Distance/Duration Trajectory Optimization for Small UAVs
,”
AIAA Guidance, Navigation and Control Conference and Exhibit
, Hilton Head, SC.
2.
Anton
,
S. R.
, and
Inman
,
D. J.
, 2008, “
Vibration Energy Harvesting for Unmanned Air Vehicles
,”
Proc. SPIE
0277-786X,
6928
, p.
692824
.
3.
Magoteaux
,
K. C.
,
Sanders
,
B.
, and
Sodano
,
H. A.
, 2008, “
Investigation of Energy Harvesting Small Unmanned Air Vehicle
,”
Proc. SPIE
0277-786X,
6928
, p.
692823
.
4.
De Marqui
,
C.
, Jr.
,
Erturk
,
A.
, and
Inman
,
D. J.
, 2010, “
Piezoaeroelastic Modeling and Analysis of a Generator Wing With Continuous and Segmented Electrodes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
21
, pp.
983
993
.
5.
Erturk
,
A.
,
Renno
,
J. M.
, and
Inman
,
D. J.
, 2009, “
Modeling of Piezoelectric Energy Harvesting From an L-Shaped Beam-Mass Structure With an Application to UAVs
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
20
, pp.
529
544
.
6.
Pines
,
D. J.
, and
Bohorquez
,
F.
, 2006, “
Challenges Facing Future Micro-Air-Vehicle Development
,”
J. Aircr.
0021-8669,
43
, pp.
290
305
.
7.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
, 2004, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
The Shock and Vibration Digest
,
36
, pp.
197
205
.
8.
Priya
,
S.
, 2007, “
Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers
,”
J. Electroceram.
1385-3449,
19
, pp.
167
184
.
9.
Anton
,
S. R.
, and
Sodano
,
H. A.
, 2007, “
A Review of Power Harvesting Using Piezoelectric Materials 2003–2006
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
R1
R21
.
10.
Cook-Chennault
,
K. A.
,
Thambi
,
N.
, and
Sastry
,
A. M.
, 2008, “
Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems With Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
0964-1726,
17
, p.
043001
.
11.
Anton
,
S. R.
,
Erturk
,
A.
,
Kong
,
N.
,
Ha
,
D. S.
, and
Inman
,
D. J.
, 2009, “
Self-Charging Structures Using Piezoceramics and Thin-Film Batteries
,”
Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems
, Oxnard, CA.
12.
Giurgiutiu
,
V.
, 2000, “
Review of Smart-Materials Actuation Solutions for Aeroelastic and Vibration Control
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
, pp.
525
544
.
13.
Lazarus
,
K. B.
,
Crawley
,
E. F.
, and
Lin
,
C. Y.
, 1997, “
Multivariable Active Lifting Surface Control Using Strain Actuation: Analytical and Experimental Results
,”
J. Aircr.
0021-8669,
34
(
3
), pp.
313
321
.
14.
Lin
,
C. Y.
,
Crawley
,
E. F.
, and
Heer
,
J.
, 1996, “
Open- and Closed-Loop Results of a Strain-Actuated Active Aeroelastic Wing
,”
J. Aircr.
0021-8669,
33
(
5
), pp.
987
994
.
15.
Lazarus
,
K. B.
,
Crawley
,
E. F.
, and
Lin
,
C. Y.
, 1996, “
Multivariable High-Authority Control of Plate-Like Active Structures
,”
J. Guid. Control Dyn.
0731-5090,
19
(
6
), pp.
1357
1363
.
16.
Agneni
,
A.
,
Mastroddi
,
F.
, and
Polli
,
G. M.
, 2003, “
Shunted Piezoelectric Patches in Elastic and Aeroelastic Vibrations
,”
Comput. Struct.
0045-7949,
81
, pp.
91
105
.
17.
Agneni
,
A.
,
Del Sorbo
,
M.
,
Mastroddi
,
F.
, and
Polli
,
G. M.
, 2006, “
Multi-Modal Damping by Shunted Piezo-Patches: Possible Aeroelastic Applications
,”
Int. J. Appl. Electromagn. Mech.
1383-5416,
24
, pp.
1
24
.
18.
McGowan
,
A. R.
,
Heeg
,
J.
, and
Lake
,
R.
, 1996, “
Results of Wind-Tunnel Testing From the Piezoelectric Aeroelastic Tailoring Investigation
,”
37th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
.
19.
Bryant
,
M.
, and
Garcia
,
E.
, 2009, “
Development of an Aeroelastic Vibration Power Harvester
,”
Proceedings of the Active and Passive Smart Structures and Integrated Systems 2009
.
20.
De Marqui
,
C.
, Jr.
,
Erturk
,
A.
, and
Inman
,
D. J.
, 2009, “
Piezoaeroelastically Coupled Modeling and Analysis of Electrical Power Generation and Shunt Damping for a Cantilever Plate
,”
Proceedings of the 17th International Conference on Composite Materials
, Edinburgh, UK, Jul. 27–31.
21.
De Marqui
,
C.
, Jr.
,
Erturk
,
A.
, and
Inman
,
D. J.
, 2009, “
An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates
,”
J. Sound Vib.
0022-460X,
327
, pp.
9
25
.
22.
Albano
,
E.
, and
Rodden
,
W. P.
, 1969, “
A Doublet-Lattice Method for Calculating Lift Distributions on Oscillating Surfaces in Subsonic Flow
,”
AIAA J.
0001-1452,
7
, pp.
279
285
.
23.
Dowell
,
E. H.
,
Curtiss
,
H. C.
, Jr.
,
Scalan
,
R. H.
, and
Sisto
,
F.
, 1978,
A Modern Course in Aeroelasticity
,
Sijthoff and Noordhoff
,
Alphen aan den Rijn, The Netherlands
.
24.
Hagood
,
N. W.
, and
von Flotow
,
A.
, 1991, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
0022-460X,
146
, pp.
243
268
.
25.
Renno
,
J. M.
,
Daqaq
,
M. F.
, and
Inman
,
D. J.
, 2009, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vib.
0022-460X,
320
(
1–2
), pp.
386
405
.
26.
Erturk
,
A.
, and
Inman
,
D. J.
, 2009, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
0964-1726,
18
, p.
025009
.
27.
Wang
,
Q. -M.
, and
Cross
,
L. E.
, 1999, “
Constitutive Equations of Symmetrical Triple Layer Piezoelectric Benders
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
46
, pp.
1343
1351
.
28.
Harder
,
R. L.
, and
Desmarais
,
R. N.
, 1972, “
Interpolation Using Surface Splines
,”
J. Aircr.
0021-8669,
9
, pp.
189
191
.
29.
Hassig
,
H. J.
, 1971, “
An Approximate True Damping Solution of the Flutter Equation by Determinant Iteration
,”
J. Aircr.
0021-8669,
8
(
11
), pp.
885
889
.
30.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008, “
Issues in Mathematical Modeling of Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
0964-1726,
17
, p.
065016
.
32.
Erturk
,
A.
,
Tarazaga
,
P. A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
, 2009, “
Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, p.
011010
.
33.
Edberg
,
D. L.
,
Bicos
,
A. S.
,
Fuller
,
C. M.
, and
Tracy
,
J. J.
, 1992, “
Theoretical and Experimental Studies of a Truss Incorporating Active Members
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
3
, pp.
333
347
.
34.
Fleming
,
A. J.
,
Berhens
,
S.
, and
Moheimani
,
S. O. R.
, 2000, “
Synthetic Impedance for Implementation of Piezoelectric Shunt-Damping Circuits
,”
Electron. Lett.
0013-5194,
36
, pp.
1525
1526
.
You do not currently have access to this content.