Using an integral equation approach, we investigate the reflection of focus wave modes on conventional and time reversal mirrors when the total field, incident plus reflected, satisfies on these mirrors the Neumann boundary condition. It is also shown that the form of the incident pulse as a function of time has a strong effect on the behavior of time reversal mirrors.
Issue Section:
Research Papers
1.
2.
Derode
, A.
, Tourin
, A.
, and Fink
, M.
, 2001, “Random Multiple Scattering of Ultrasound. I. Coherent and Ballistic Waves
,” Phys. Rev. E
1063-651X, 64
, p. 036605
.3.
Bardos
, C.
, and Fink
, M.
, 2002, “Mathematical Foundation of Time-Reversal Mirrors
,” Asymptotic Anal.
0921-7134, 29
, pp. 157
–182
.4.
Bal
, G.
, and Ryzhik
, L.
, 2000, “Time Reversal for Classical Waves in Random Media
,” C. R. Acad. Sci., Ser. I: Math.
0764-4442, 333
, pp. 1041
–1046
.5.
Klibanov
, M. V.
, and Timonov
, A.
, 2003, “On the Mathematical Treatment of Time Reversal
,” Inverse Probl.
0266-5611, 19
, pp. 1299
–1318
.6.
Hazard
, C.
, and Ramdani
, K.
, 2004, “Selective Acoustic Focusing Using Time Harmonic Reversal Mirrors
,” SIAM J. Appl. Math.
0036-1399, 64
, pp. 1057
–1076
.7.
Quieffin
, N.
, Ing
, R. K.
, Catheline
, S.
, and Fink
, M.
, 2004, “Real Time Focusing Using an Ultrasonic One Channel Time Reversal Mirror Coupled to a Solid Cavity
,” J. Acoust. Soc. Am.
0001-4966, 115
, pp. 1955
–1960
.8.
Fink
, M.
, 2006, “Time Reversal Acoustics in Complex Environments
,” Geophysics
0016-8033, 17
, pp. S1151
–S1164
.9.
Brittingham
, J. N.
, 1983, “Focus Wave Modes in Homogeneous Maxwell Equations
,” J. Appl. Phys.
0021-8979, 54
, pp. 1179
–1185
.10.
Kiselev
, A. P.
, 1983, “Modulated Gaussian Beams
,” Radiophys. Quantum Electron.
0033-8443, 26
, pp. 755
–761
.11.
Besieris
, I. M.
, and Shaarawi
, A. M.
, 2002, “Three Classes of Courant-Hilbert Progressive Solutions to the Scalar Wave Equation
,” J. Electromagn. Waves Appl.
0920-5071, 16
, pp. 1047
–1060
.12.
Borisov
, V. V.
, and Utkin
, A. B.
, 2001, “Generalization of Brittingham’s Localized Solutions of the Wave Equation
,” Eur. Phys. J. B
1434-6028, 21
, pp. 477
–480
.13.
Kiselev
, A. P.
, 2007, “Localized Light Waves
,” Opt. Spectrosc.
0030-400X, 102
, pp. 603
–622
.14.
Hillion
, P.
, 2003, “Localized Wave Propagation in Nonhomogeneous Media
,” Phys. Scr., T
0281-1847, 67
, pp. 466
–471
.15.
Hillion
, P.
, 2006, “Acoustic Pulse Reflection at a Time Reversal Mirror
,” J. Sound Vib.
0022-460X, 292
, pp. 488
–503
.16.
Candy
, J. V.
, Ziolkowski
, R. W.
, and Parker
, S. R.
, 1990, “Transient Wave Reconstruction and Processing
,” J. Acoust. Soc. Am.
0001-4966, 88
, pp. 2248
–2258
.17.
Hernandez
, J. E.
, Ziolkowski
, R. W.
, and Parker
, S. R.
, 1992, “Synthesis of the Driving Functions of an Array for Propagating Localized Wave Energy
,” J. Acoust. Soc. Am.
0001-4966, 92
, pp. 550
–562
.18.
Fink
, M.
, 2005, “Le retournement temporel des ondes
,” Lettre de l’Académie des Sciences
, 15
, pp. 11
–13
.19.
Hillion
, P.
, 2000, “Diffraction of Electromagnetic Waves at Plane Apertures
,” J. Electromagn. Waves Appl.
0920-5071, 14
, pp. 1687
–1699
.20.
Shchegrov
, A. V.
, and Carney
, P. S.
, 1999, “Far-Field Contribution of Evanescent Modes to the Electromagnetic Green Tensor
,” J. Opt. Soc. Am. A Opt. Image Sci. Vis.
, 16
, pp. 2583
–2584
. 1084-752921.
Besieris
, I. M.
, Abdel-Rhaman
, M.
, Shaarawi
, A. M.
, and Chatzipetros
, A.
, 1998, “Two Fundamental Representations of the Localized Pulse Solutions to the Scalar Wave Equation
,” PIER
1070-4698, 19
, pp. 1
–48
.22.
Watson
, G. N.
, 1962, Theory of Bessel Functions
, University
, Cambridge
.23.
Doetsch
, G.
, 1971, Guide to the Applications of the Laplace and Z-Transforms
, Van Nostrand
, New York
.24.
Korn
, G. A.
, and Korn
, T. M.
, 1968, Mathematical Handbook for Scientists and Engineers
, McGraw-Hill
, New York
.25.
Fink
, M.
, and Prada
, C.
, 2001, “Acoustic Time Reversal Mirrors
,” Inverse Probl.
0266-5611, 17
, pp. R.1
–R.38
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.