The rotor-active magnetic bearing system subjected to a periodically time-varying stiffness having quadratic and cubic nonlinearities is studied and solved. The multiple time scale technique is applied to solve the nonlinear differential equations governing the system up to the second order approximation. All possible resonance cases are deduced at this approximation and some of them are confirmed by applying the Rung–Kutta method. The main attention is focused on the stability of the steady-state solution near the simultaneous principal resonance and the effects of different parameters on the steady-state response. A comparison is made with the available published work.

1.
Mohamed
,
A. M.
, and
Emad
,
F. P.
, 1993, “
Non-Linear Oscillations in Magnetic Bearing Systems
,”
IEEE Trans. Automat. Control
,
38
, pp.
1242
1245
. 0018-9286
2.
Hu
,
T.
,
Lin
,
Z.
,
Jiang
,
W.
, and
Allaire
,
P. E.
, 2005, “
Constrained Control Design for Magnetic Bearing Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
601
616
.
3.
Wang
,
H. B.
, and
Liu
,
J. Q.
, 2005, “
Stability and Bifurcation Analysis in a Magnetic Bearing System With Time Delays
,”
Chaos, Solitons Fractals
,
26
, pp.
813
825
. 0960-0779
4.
Wang
,
H. B.
, and
Liu
,
J. Q.
, 2006, “
Multiple Stability Analysis in a Magnetic Bearing System With Time Delays
,”
Chaos, Solitons Fractals
,
27
, pp.
789
799
. 0960-0779
5.
Jang
,
M. J.
, and
Chen
,
C. K.
, 2001, “
Bifurcation Analysis in Flexible Rotor Supported by Active Magnetic Bearing
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
11
(
8
), pp.
2163
2178
.
6.
Jang
,
M. J.
,
Chen
,
C. L.
, and
Tsao
,
M.
, 2005, “
Sliding Mode Control for Active Magnetic Bearing System With Flexible Rotor
,”
J. Franklin Inst.
0016-0032,
342
, pp.
401
419
.
7.
Ji
,
J. C.
,
Yu
,
L.
, and
Leung
,
A. Y. T.
, 2000, “
Bifurcation Behavior of a Rotor by Active Magnetic Bearings
,”
J. Sound Vib.
0022-460X,
235
, pp.
133
151
.
8.
Ji
,
J. C.
, and
Leung
,
A. Y. T.
, 2003, “
Non-Linear Oscillations of a Rotor-Magnetic Bearing System Under Super Harmonic Resonance Conditions
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
829
835
.
9.
Inayat-Hussain
,
J. I.
, 2006, “
Chaos Via Torus Breakdown in the Vibration Response of a Rigid Rotor Supported by Active Magnetic Bearings
,”
Chaos, Solitons Fractals
,
31
, pp.
12
27
. 0960-0779
10.
Ji
,
J. C.
, and
Hansen
,
C. H.
, 2004, “
Approximate Solutions and Chaotic Motions of a Piecewise Nonlinear Oscillator
,”
Chaos, Solitons Fractals
,
20
, pp.
1121
1133
. 0960-0779
11.
Ji
,
J. C.
, and
Hansen
,
C. H.
, 2001, “
Non-Linear Oscillations of a Rotor in Active Magnetic Bearings
,”
J. Sound Vib.
0022-460X,
240
, pp.
599
612
.
12.
Zhang
,
W.
, and
Zu
,
J. W.
, 2003, “
Nonlinear Dynamic Analysis for a Rotor-Active Magnetic Bearing System With Time-Varying Stiffness. Part I: Formulation and Local Bifurcation
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
, Washington, DC, Nov. 16–21,
ASME
,
New York
, pp.
631
640
.
13.
Zhang
,
W.
,
Yao
,
M. H.
, and
Zhan
,
X. P.
, 2006, “
Multi-Pulse Chaotic Motions of a Rotor-Active Magnetic Bearing System With Time-Varying Stiffness
,”
Chaos, Solitons Fractals
0960-0779,
27
(
1
), pp.
175
186
.
14.
Zhang
,
W.
, and
Zhan
,
X. P.
, 2005, “
Periodic and Chaotic Motions of a Rotor-Active Magnetic Bearing With Quadratic and Cubic Terms and Time-Varying Stiffness
,”
Nonlinear Dyn.
0924-090X,
41
, pp.
331
359
.
15.
Zhang
,
W.
,
Zu
,
J. W.
, and
Wang
,
F. X.
, 2008, “
Global Bifurcations and Chaos for a Rotor-Active Magnetic Bearing System With Time-Varying Stiffness
,”
Chaos, Solitons Fractals
,
35
, pp.
586
608
. 0960-0779
16.
Zhang
,
W.
, and
Zu
,
J. W.
, 2008, “
Transient and Steady Nonlinear Response for a Rotor-Active Magnetic Bearings System With Time-Varying Stiffness
,”
Chaos, Solitons Fractals
0960-0779,
38
, pp.
1152
1167
.
17.
Amer
,
Y. A.
, and
Hegazy
,
U. H.
, 2007, “
Resonance Behavior of a Rotor-Active Magnetic Bearing With Time-Varying Stiffness
,”
Chaos, Solitons Fractals
0960-0779,
34
, pp.
1328
1345
.
18.
Amer
,
Y. A.
,
Eissa
,
M.
, and
Hegazy
,
U. H.
, 2006, “
Dynamic Behavior of an AMB/Supported Rotor Subject to Parametric Excitation
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
646
652
.
19.
Eissa
,
M.
,
Hegazy
,
U. H.
, and
Am
,
Y. A.
, 2008, “
A Time-Varying Stiffness Rotor-Active Magnetic Bearings Under Combined Resonance
,”
ASME J. Appl. Mech.
,
75
, pp.
1
12
. 0021-8936
20.
Eissa
,
M.
,
Hegazy
,
U. H.
, and
Am
,
Y. A.
, 2008, “
Dynamic Behavior of an AMB Supported Rotor Subject to Harmonic Excitation
,”
Appl. Math. Model.
,
32
, pp.
1370
1380
. 0307-904X
21.
Nayfeh
,
A. H.
, 1991,
Introduction to Perturbation Techniques
,
Wiley-Interscience
,
New York
.
22.
Kevorkian
,
J.
, and
Cole
,
J. D.
, 1996,
Multiple Scale and Singular Perturbation Methods
,
Spinger-Verlag
,
New York
.
23.
Yakowitz
,
S.
, and
Szidaouszky
,
F.
, 1992,
An Introduction to Numerical Computation
,
Macmillan
,
New York
.
24.
Isaacson
,
E.
, and
Keller
,
H.
, 1994,
Analysis of Numerical Methods
,
Dover
,
New York
.
You do not currently have access to this content.