A sandwich finite element for laminated steels is presented. It is based on a discrete displacement approach and allows for both symmetrical and unsymmetrical configurations. The three-layer sandwich model is built assuming a Timoshenko hypothesis for the viscoelastic core and Euler–Bernoulli hypotheses for the elastic faces, but the latter is modified to account for the rotational influence of the transversal shearing in the core. The validity and accuracy of the presented element are assessed through comparisons with numerical results of sandwich beams and sandwich rings with a variety of geometrical and mechanical properties and various boundary conditions. The present results are also compared with analytical, finite element, and experimental solutions for various boundary conditions.

1.
Polycore Composites@–Quiet Steel@, “
Laminated Metal for Noise and Vibration Control
,” MSC Laminates and Composites Inc., Chicago, IL, www.laminatesandcomposites.comwww.laminatesandcomposites.com
2.
Dynalam, “
A Publication of Roush Industries
,” Detroit, MI, www.roushind.comwww.roushind.com
3.
Welch
,
T. E.
, and
Schwaegler
,
J. R.
, 1998, “
Cost and Performance Benefits for Laminated Steel Body Parts
,”
SAE Noise and Vibration Conference
,” Paper No. 99NV-258.
4.
Pyper
,
J.
, 2001, “
Laminated Glass Provides Noise Barrier Benefits in Automotive and Architectural Applications
,”
Sound Vib.
,
35
(
8
), pp.
10
16
. 0038-1810
5.
Ross
,
D.
,
Ungar
,
E.
, and
Kerwin
,
E.
, 1959, “
Damping of Flexural Vibrations by Means of Viscoelastic Laminate
,”
Structural Damping
,
ASME
,
New York
.
6.
Kerwin
,
E. M.
, 1959, “
Damping of Flexural Waves by a Constrained Viscoelastic Layer
,”
J. Acoust. Soc. Am.
0001-4966,
31
(
7
), pp.
952
962
.
7.
DiTaranto
,
R. A.
, 1965, “
Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite Length Beams
,”
ASME J. Appl. Mech.
0021-8936,
87
, pp.
881
886
.
8.
Mead
,
D. J.
, and
Markus
,
S.
, 1969, “
The Forced Vibration of a Three-Layer, Damped Sandwich Beam With Arbitrary Boundary Conditions
,”
J. Sound Vib.
0022-460X,
10
(
2
), pp.
163
175
.
9.
Mead
,
D. J.
, 1970, “
Loss Factors and Resonant Frequencies of Encastre Damped Sandwich Beams
,”
J. Sound Vib.
0022-460X,
12
(
1
), pp.
99
112
.
10.
Rao
,
D. K.
, 1978, “
Frequency and Loss Factors of Sandwich Beams Under Various Boundary Conditions
,”
J. Mech. Eng. Sci.
0022-2542,
20
(
5
), pp.
271
282
.
11.
Yan
,
M. J.
, 1972, “
Governing Equations for Vibrating Constrained-Layer Damping Sandwich Plates and Beams
,”
ASME J. Appl. Mech.
,
39
(
4
), pp.
1041
1046
. 0021-8936
12.
Mead
,
D. J.
, 1982, “
A Comparison of Some Equations for the Flexural Vibration of Damped Sandwich Beams
,”
J. Sound Vib.
,
83
(
3
), pp.
363
377
. 0022-460X
13.
Yu
,
Y. Y.
, 1962, “
Damping of Flexural Vibrations of Sandwich Plates
,”
J. Aerosp. Sci.
0095-9820,
29
, pp.
790
803
.
14.
Rao
,
Y. V. K. S.
, 1973, “
Theory of Vibratory Bending of Unsymmetrical Sandwich Plates
,”
Arch. Mech.
0373-2029,
25
(
2
), pp.
213
225
.
15.
Sadasiva Rao
,
Y. V. K.
, and
Nakra
,
B. C.
, 1974, “
Vibrations of Unsymmetrical Sandwich Beams and Plates With Viscoelastic Cores
,”
J. Sound Vib.
0022-460X,
34
(
3
), pp.
309
326
.
16.
Durocher
,
L. L.
, and
Solecki
,
R.
, 1976, “
Harmonic Vibrations of Isotropic, Elastic, and Elastic/Viscoelastic Three-Layered Plates
,”
J. Acoust. Soc. Am.
0001-4966,
60
(
1
), pp.
105
112
.
17.
Kung
,
S. W.
, and
Singh
,
R.
, 1998, “
Vibration Analysis of Beams With Multiple Constrained Layer Damping Patches
,”
J. Sound Vib.
0022-460X,
212
(
5
), pp.
781
805
.
18.
Lall
,
A. K.
,
Asnani
,
N. T.
, and
Nakra
,
B. C.
, 1988, “
Damping Analysis of Partially Covered Sandwich Beams
,”
J. Sound Vib.
,
123
(
2
), pp.
247
259
. 0022-460X
19.
Ghinet
,
S.
, 2005, “
Statistical Energy Analysis of the Transmission Loss of Sandwich and Laminate Composite Structures
,” Ph.D. thesis, Department of Mechanical Engineering, Sherbrooke University, Québec, Canada.
20.
Johnson
,
C. D.
, 1980, “
Finite Element Prediction of Damping in Beams With Constrained Viscoelastic Layers
,”
Shock and Vibration Bulletin
,
51
(
1
), pp.
71
81
.
21.
Soni
,
M. L.
, 1980, “
Finite Element Analysis of Viscoelastically Damped Sandwich Structures
,”
Shock and Vibration Bulletin
,
55
(
1
) pp.
97
108
.
22.
Mace
,
M.
, 1994, “
Damping of Beam Vibrations by Means of a Thin Constrained Viscoelastic Layer: Evaluation of a New Theory
,”
J. Sound Vib.
,
172
(
5
), pp.
577
591
. 0022-460X
23.
Baber
,
T. T.
,
Maddox
,
R. A.
, and
Orozco
,
C. E.
1998, “
A Finite Element Model for Harmonically Excited Viscoelastic Sandwich Beams
,”
Comput. Struct.
0045-7949,
66
(
1
), pp.
105
113
.
24.
Zapfe
,
J. A.
, and
Lesieutre
,
G. A.
, 1999, “
A Discrete Layer Beam Finite Element for the Dynamic Analysis of Composite Sandwich Beams With Integral Damping Layers
,”
Comput. Struct.
,
70
(
6
), pp.
647
666
. 0045-7949
25.
Assaf
,
S.
, 1991, “
Modélisation Par La Méthode Des Éléments Finis Du Comportement Vibratoire Des Poutres Et Plaques Sandwiches: Métal–Matériaux Viscoélastique
,” Ph.D. thesis, Université de technologie de Compiègne, France.
26.
Trindade
,
M. A.
, 2001, “
Finite Element Modelling of Hybrid Active-Passive Vibration Damping of Multilayer Piezoelectric Sandwich Beams. I. Formulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
51
(
7
), pp.
835
854
.
27.
Daya
,
E. M.
, and
Potier-Ferry
,
M.
, 2002, “
A Shell Element for Viscoelastically Damped Sandwich Structures
,”
Revue Européenne Des Éléments Finis
,
11
(
1
), pp.
39
56
.
28.
Sainsbury
,
M. G.
, and
Zhang
,
Q. J.
, 1999, “
The Galerkin Element Method Applied to the Vibration of Damped Sandwich Beams
,”
Comput. Struct.
0045-7949,
71
(
3
), pp.
239
256
.
29.
Galucio
,
A. C.
,
Deü
,
J. -F.
, and
Ohayon
,
R.
, 2004, “
Finite Element Formulation of Viscoelastic Sandwich Beams Using Fractional Derivative Operators
,”
Comput. Mech.
,
33
(
4
), pp.
282
291
. 0178-7675
30.
Prathap
,
G.
, and
Bhashyam
,
G. R.
, 1982, “
Reduced Integration and the Shear-Flexible Beam Element
,”
Int. J. Numer. Methods Eng.
0029-5981,
18
(
2
), pp.
195
210
.
31.
Batoz
,
J. L.
,
Bathe
,
K. -J.
, and
Ho
,
L. -W.
, 1980, “
A Study of Three-Node Triangular Plate Bending Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
(
12
), pp.
1771
1812
.
32.
Sun
,
C. T.
, and
Lu
,
Y. P.
, 1995,
Vibration Damping of Structural Elements
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
33.
Shorter
,
P. J.
, 2004, “
Wave Propagation and Damping in Linear Viscoelastic Laminates
,”
J. Acoust. Soc. Am.
0001-4966,
115
(
5
), pp.
1917
1925
.
You do not currently have access to this content.