This paper investigates synchronization transitions in a system of coupled Rössler type nonidentical self-sustained chaotic oscillators. The interest in Rössler oscillators is due to their chaotic behavior at very high frequencies. Both phase synchronization and lag synchronization are analyzed numerically considering coupling parameters. It is shown that both types of synchronization can be achieved by monitoring the coupling parameters. The advantage of using one parameter to ensure both types of synchronization is found in practice. Another advantage of monitoring only one resistor is found in the accuracy of results. One resistor is used to predict the boundaries of the control resistor for the occurrence of each type of synchronization. An experimental study of the synchronization is carried out in this paper. An appropriate electronic circuit describing the coupled oscillators is designed and realized. Experimental wave forms in the drive and response systems are obtained and their comparison done to confirm the achievement of synchronization. The analog simulation is advantageous to analyze the behavior of the coupled system at very high frequencies at appropriate time scaling and offers the possibility of using our coupled system for ultra-wide-band applications.

1.
Sushchik
, Jr.,
M.
,
Rulkov
,
N.
,
Larson
,
L.
,
Tsimring
,
L.
,
Abarbanel
,
H.
,
Yao
,
K.
, and
Volkovskii
,
A.
, 2000, “
Chaotic Pulse Position Modulation: A Robust Method of Communicating With Chaos
,”
IEEE Commun. Lett.
1089-7798,
4
, pp.
128
130
.
2.
Andronov
,
A.
,
Vitt
,
A.
, and
Khykin
,
S.
, 1966,
Theory of Oscillations
,
Pergamon
,
Oxford
.
3.
Hayashi
,
C.
, 1964,
Nonlinear Oscillations in Physical Systems
,
McGraw-Hill
,
New York
.
4.
Blekhman
,
I.
, 1971,
Synchronization of Dynamical Systems
,
Nauka
,
Moscow
.
5.
Pikovsky
,
A. S.
,
Rosenblum
,
M. G.
, and
Kurths
,
J.
, 1996, “
Synchronization in a Population of Globally Coupled Chaotic Oscillators
,”
Europhys. Lett.
0295-5075,
34
, pp.
165
170
.
6.
Sosnovtseva
,
O. V.
,
Balanov
,
A. G.
,
Vadivasova
,
T. E.
,
Astakhov
,
V. V.
, and
Mosekilde
,
E.
, 1999, “
Loss of Lag Synchronization in Coupled Chaotic Systems
,”
Phys. Rev. E
1063-651X,
60
, pp.
6560
6565
.
7.
Pecora
,
L. M.
, and
Carroll
,
T. L.
, 1990, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
0031-9007,
64
, pp.
821
824
.
8.
Carroll
,
T. L.
, and
Pecora
,
L.
, 1991, “
Synchronization in Chaotic Circuits
,”
IEEE Trans. Circuits Syst.
0098-4094,
38
, pp.
453
456
.
9.
Blekhman
,
I.
, 1998,
Synchronization in Science and Technology
,
ASME
,
New York
.
10.
Cuamo
,
K. M.
, and
Oppenheim
,
A. V.
, 1993, “
Circuit Implementation of Synchronized Chaos With Applications to Communications
,”
Phys. Rev. Lett.
0031-9007,
71
, pp.
65
68
.
11.
Kocarev
,
L.
,
Halle
,
K. S.
,
Eckert
,
K.
,
Chua
,
L. O.
, and
Parliz
,
U.
, 1992, “
Experimental Demonstration of Secure Communications via Chaotic Synchronization
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
2
, pp.
709
713
.
12.
Rosenblum
,
M. G.
, and
Pikovsky
,
A. S.
, 2004, “
Controlling Synchronization in an Ensemble of Globally Coupled Oscillators
,”
Phys. Rev. Lett.
0031-9007,
92
, p.
114102
.
13.
Koronovskiĭ
,
A. A.
,
Hramov
,
A. E.
, and
Khromova
,
I. A.
, 2004, “
The Time of Synchronisation of Oscillations in Two Coupled Identical Subsystems
,”
Tech. Phys. Lett.
1063-7850,
30
, pp.
253
255
.
14.
Parlitz
,
U.
, and
Wedeking
,
I.
, 2000, “
Chaotic Phase Synchronization Based on Binary Coupling Signals
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
10
, pp.
2527
2532
.
15.
Bowong
,
S.
, and
Moukam Kakmeni
,
F. M.
, 2006, “
Chaos Control of Uncertain Chaotic Systems via Backstepping Approach
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
21
27
.
16.
Wu
,
C. W.
, and
Chua
,
L. O.
, 1993, “
A Simple Way to Synchronize Chaotic Systems With Application to Secure Communication Systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
3
, pp.
1619
1627
.
17.
Yang
,
X.
,
Wu
,
T. X.
, and
Jaggard
,
D. L.
, 2002, “
Synchronization Recovery of Chaotic Wave Through an Imperfect Channel
,”
IEEE Antennas Wireless Propag. Lett.
1536-1225,
1
, pp.
154
156
.
18.
Rulkov
,
N. F.
, 1996, “
Image of Synchronized Chaos: Experiments With Circuits
,”
Chaos
1054-1500,
6
, pp.
262
279
.
19.
Kocarev
,
L.
, and
Parlitz
,
U.
, 1995, “
General Approach for Chaotic Synchronization With Applications to Communications
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
5028
5031
.
20.
Chedjou
,
J. C.
,
Fotsin
,
H. B.
,
Woafo
,
P.
, and
Domngang
,
S.
, 2001, “
Analog Simulation of the Dynamics of a van der Pol Oscillator Coupled to a Duffing Oscillator
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
48
, pp.
748
756
.
21.
Chedjou
,
J. C.
,
Kyamakya
,
K.
,
Moussa
,
I.
,
Kuchenbecker
,
H.-P.
, and
Mathis
,
W.
, 2006, “
Behavior of a Self-Sustained Electromechanical Transducer and Routes to Chaos
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
282
293
.
22.
Vendergraft
,
J. S.
, 1978,
Introduction to Numerical Computations
,
Academic
,
New York
.
23.
Andrade
,
V.
, and
Lai
,
Y.-C.
, 2001, “
Super Persistent Chaotic Transients in Physical Systems: Effect of Noise of Noise on Phase Synchronization of Coupled Chaotic Oscillators
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
11
, pp.
2607
2619
.
24.
Pujol-Peré
,
A.
,
Calvo
,
O.
,
Matías
,
M. A.
, and
Kurths
,
J.
, 2003, “
Experimental Study of Imperfect Phase Synchronization in the Forced Lorenz System
,”
Chaos
1054-1500,
13
, pp.
319
326
.
You do not currently have access to this content.