Transverse vibration of two axially moving beams connected by a Winkler elastic foundation is analyzed analytically. The two beams are tensioned, translating axially with a common constant velocity, simply supported at their ends, and of different materials and geometry. The natural frequencies and associated mode shapes are obtained. The natural frequencies of the system are composed of two infinite sets describing in-phase and out-of-phase vibrations. In case the beams are identical, these modes become synchronous and asynchronous, respectively. Divergence instability occurs at a critical velocity and a critical tension; and, divergence and flutter instabilities coexist at postcritical speeds, and divergence instability takes place precritical tensions. The effects of the mass, flexural rigidity, and axial tension ratios of the two beams are presented.

1.
Gaith
,
M.
, and
Müftü
,
S.
, 2005, “
Transverse Vibration of Two Axially Moving, Tensioned Beams Connected by an Elastic Foundation
,”
Proc. of Vibration and Noise Control Symposium, ASME International Mechanical Engineering Congress and Exposition, Nov. 8–12
, Orlando, ASME, New York, CD-ROM Proc., IMECE 2005-80377.
2.
Wickert
,
J. A.
, and
Mote
, Jr.
C. A.
, 1990, “
Classical Vibration Analysis of Axially-Moving Continua
,”
ASME J. Appl. Mech.
0021-8936,
57
(
3
), pp.
738
744
.
3.
Lin
,
C. C.
, 1997, “
Stability and Vibration Characteristics of Axially Moving Plates
,”
Int. J. Solids Struct.
0020-7683,
34
(
24
), pp.
3179
3190
.
4.
Müftü
,
S.
, and
Benson
,
R. C.
, 1994, “
A Numerical Solution to Transient Displacement of a Circumferentially Moving Cylindrical Shell
,”
ASME J. Vibr. Acoust.
0739-3717,
116
(
4
), pp.
567
572
.
5.
Mockenstrum
,
E. M.
, and
Mote
, Jr.,
C. D.
, 1999, “
Steady Motions of Translating, Twisted Webs
,”
Int. J. Non-Linear Mech.
0020-7462,
34
(
2
), pp.
247
257
.
6.
Gaith
,
M.
, 2005, “
Transverse Vibration of Two Continua Interconnected by an Elastic Foundation: Stationary and Axially Translating Cases
,” Ph.D. dissertation, Northeastern University, Boston.
7.
Chen
,
L.-Q.
, 2005, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
Appl. Mech. Rev.
0003-6900,
58
, pp.
91
116
.
8.
Meirovitch
,
L.
, 1974, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
0001-1452,
12
, pp.
1337
1342
.
9.
Hughes
,
P. C.
, and
D’Eleuterio
,
G. M.
, 1986, “
Modal Parameter Analysis of Gyroscopic Continua
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
918
924
.
10.
Bhat
,
R. B.
,
Xistris
,
G. D.
, and
Sankar
,
T. S.
, 1982, “
Dynamic Behavior of a Moving Belt Supported on Elastic Foundation
,”
ASME J. Mech. Des.
1050-0472,
104
, pp.
143
147
.
11.
Perkins
,
N. C.
, 1990, “
Linear Dynamics of a Translating String on Elastic Foundation
,”
ASME J. Vibr. Acoust.
0739-3717,
112
, pp.
2
7
.
12.
Wickert
,
J. A.
, 1994, “
Response Solutions for the Vibration of a Traveling String on an Elastic Foundation
,”
ASME J. Vibr. Acoust.
0739-3717,
116
(
1
), pp.
137
139
.
13.
Parker
,
R. G.
, 1999, “
Supercritical Speed Stability of the Trivial Equilibrium of an Axially Moving String on an Elastic Foundation
,
J. Sound Vib.
0022-460X,
221
, pp.
205
219
.
14.
Cheng
,
S. P.
, and
Perkins
,
N. C.
, 1991, “
The Vibration and Stability of a Friction-Guided Translating String
,”
J. Sound Vib.
0022-460X,
144
, pp.
282
292
.
15.
Zen
,
G.
, and
Müftü
,
S.
, 2006, “
Stability of an Accelerating String Subjected to Frictional Guiding Forces
,”
J. Sound Vib.
0022-460X,
289
, pp.
551
576
.
16.
Seelig
,
J. M.
, and
Hoppmann
, II,
W. H.
, 1964, “
Normal Mode Vibrations of Systems of Elastically Connected Parallel Bars
,”
J. Acoust. Soc. Am.
0001-4966,
36
, pp.
93
99
.
17.
Oniszczuk
,
Z.
, 2003, “
Damped Vibration Analysis of an Elastically Connected Complex Double-String System
,”
J. Sound Vib.
0022-460X,
264
, pp.
253
271
.
18.
Oniszczuk
,
Z.
, 2000, “
Free Transverse Vibrations of Elastically Connected Simply Supported Double-Beam Complex System
,”
J. Sound Vib.
0022-460X,
232
, pp.
387
403
.
19.
Mockenstrum
,
E. M.
, and
Guo
,
J.
, 2005, “
Nonlinear Vibration of Parametrically Excited, Axially Moving Strings
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
374
380
.
20.
Zhang
,
N.-H.
, and
Chen
,
L.-Q.
, 2005, “
Nonlinear Dynamical Analysis of Axially Moving Viscoelastic Strings
,”
Chaos, Solitons Fractals
0960-0779,
24
, pp.
1065
1074
.
21.
Lee
,
U.
,
Kim
,
J.
, and
Oh
,
K.
, 2004, “
Spectral Analysis for the Transverse Vibration of an Axially Moving Timoshenko Beam
,”
J. Sound Vib.
0022-460X,
271
, pp.
685
703
.
You do not currently have access to this content.