In this paper, study of nonhomogeneity as well as variable thickness in elliptic and circular orthotropic plates is undertaken. Nonhomogeneity of plate material is assumed to be a quadratic variation of Young’s modulii and density whereas shear modulus, is considered to vary linearly along both the axes. The quadratic thickness variation in orthotropic nonhomogeneous plates is also considered. Effect of variation of these parameters on vibrational characteristics are analyzed for various boundary conditions at the edges. Results are obtained using boundary characteristic orthogonal polynomials generated by using Gram-Schmidt orthogonalization procedure in Rayleigh-Ritz method.

1.
Leissa
,
A. W.
, 1969,
Vibration of Plates
,
Office of Technology Utilization
, NASA SP-160, Washington.
2.
Leissa
,
A. W.
, 1977, “
Recent Research in Plate Vibrations: Classical Theory
,”
Shock Vib. Dig.
0583-1024,
9
(
10
), pp.
3
24
.
3.
Leissa
,
A. W.
, 1978, “
Recent Research in Plate Vibrations: 1973–1976: Complicating Effects
,”
Shock Vib. Dig.
0583-1024,
10
(
12
), pp.
21
35
.
4.
Leissa
,
A. W.
, 1981, “
Plate Vibration Research, 1976–1980: Classical Theory
,”
Shock Vib. Dig.
0583-1024,
13
(
9
), pp.
11
22
.
5.
Leissa
,
A. W.
, 1981, “
Plate Vibration Research, 1976–1980: Classical Theory
,”
Shock Vib. Dig.
0583-1024,
13
(
10
), pp.
19
36
.
6.
Tomar
,
J. S.
,
Gupta
,
D. C.
, and
Jain
,
N. C.
, 1982, “
Axisymmetric Vibrations of an Isotropic Elastic Nonhomogeneous Circular Plates of Linearly Varying Thickness
,”
J. Sound Vib.
0022-460X,
85
(
3
), pp.
365
370
.
7.
Singh
,
B.
, and
Tyagi
,
D. K.
, 1985, “
Transverse Vibration of Elliptic Plates With Variable Thickness
,”
J. Sound Vib.
0022-460X,
99
(
3
), pp.
379
391
.
8.
Singh
,
B.
, and
Chakraverty
,
S.
, 1994, “
Use of Characteristic Orthogonal Polynomials in Two Dimensions for Transverse Vibration of Elliptic and Circular Plates With Variable Thickness
,”
J. Sound Vib.
0022-460X,
173
(
3
), pp.
289
299
.
9.
Chakraverty
,
S.
, and
Petyt
,
M.
, 1997, “
Natural Frequencies for Free Vibration of Non-Homogeneous Elliptic and Circular Plates Using Two-Dimensional Orthogonal Polynomials
,”
Appl. Math. Model.
0307-904X,
21
, pp.
399
417
.
10.
Hassan
,
S.
, and
Makray
,
M.
, 2003, “
Transverse Vibrations of Elliptical Plate of Linearly Varying Thickness With Half of the Boundary Clamped and the Rest Simply Supported
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
873
890
.
11.
Kim
,
C. S.
, and
Dickinson
,
S. M.
, 1989, “
On the Lateral Vibration of Thin Annular and Circular Composite Plates Subject to Certain Complicating Effects
,”
J. Sound Vib.
0022-460X,
130
(
3
), pp.
363
377
.
12.
Lal
,
R.
, and
Sharma
,
S.
, 2004, “
Axisymmetric Vibrations of Non-Homogeneous Polar Orthotropic Annular Plates of Variable Thickness
,”
J. Sound Vib.
0022-460X,
272
, pp.
245
265
.
13.
Narita
,
Y.
, 1986, “
Free Vibration Analysis of Orthotropic Elliptical Plates Resting on Arbitrary Distributed Point Support
,”
J. Sound Vib.
0022-460X,
108
, pp.
1
10
.
14.
Laura
,
P. A. A.
, and
Gutierrez
,
R. H.
, 2002, “
Transverse Vibrations of Rectangular Plates of Generalized Anisotropy and Discontinuously Varying Thickness
,”
J. Sound Vib.
0022-460X,
250
(
3
), pp.
569
574
.
15.
Gupta
,
A. P.
, and
Bhardwaj
,
N.
, 2004, “
Vibration of Rectangular Orthotropic Elliptic Plates of Quadratically Varying Thickness Resting on Elastic Foundation
,”
J. Vibr. Acoust.
0739-3717,
126
(
1
), pp.
132
140
.
16.
Sakata
,
T.
, 1976,“
A Reduction Method for Problems of Vibration of Orthotropic Plates
,”
J. Sound Vib.
0022-460X,
48
, pp.
405
412
.
17.
Rajappa
,
N. R.
, 1963, “
Free Vibration of Rectangular and Circular Orthotropic Plates
,”
AIAA J.
0001-1452,
1
, pp.
1194
1195
.
18.
McNitt
,
R. P.
, 1962, “
Free Vibration of a Clamped Elliptical Plate
,”
J. Aerosp. Sci.
0095-9820,
29
, pp.
1124
1125
.
19.
Kim
,
C. S.
, 2003, “
Natural Frequencies of Orthotropic, Elliptical and Circular Plates
,”
J. Sound Vib.
0022-460X,
259
(
3
), pp.
733
745
.
20.
Singh
,
B.
, and
Chakraverty
,
S.
, 1991, “
Transverse Vibrations of Completely Free Elliptic and Circular Plates Using Orthogonal Polynomials in Rayleigh Ritz Method
,”
Int. J. Mech. Sci.
0020-7403,
33
(
9
), pp.
741
751
.
21.
Singh
,
B.
, and
Chakraverty
,
S.
, 1992, “
Transverse Vibration of Simply-Supported Elliptic and Circular Plates Using Orthogonal Polynomials in Two Variables
,”
J. Sound Vib.
0022-460X,
152
(
1
), pp.
149
155
.
22.
Singh
,
B.
, and
Chakraverty
,
S.
, 1992, “
On the Use of Orthogonal Polynomials in Rayleigh Ritz Method for the Study of Transverse Vibration of Elliptic Plates
,”
Comput. Struct.
0045-7949,
43
, pp.
439
443
.
23.
Chakraverty
,
S.
, and
Petyt
,
M.
, 1999, “
Free Vibration Analysis of Elliptic and Circular Plates Having Rectangular Orthotropy
,”
Struct. Eng. Mech.
1225-4568,
7
(
1
), pp.
53
67
.
You do not currently have access to this content.