The performance of particle dampers whose behavior under broadband excitations involves internal friction and momentum transfer is a highly complex nonlinear process that is not amenable to exact analytical solutions. While numerous analytical and experimental studies have been conducted over many years to develop strategies for modeling and controlling the behavior of this class of vibration dampers, no guidelines currently exist for determining optimum strategies for maximizing the performance of particle dampers, whether in a single unit or in arrays of dampers, under random excitation. This paper focuses on the development and evaluation of practical design strategies for maximizing the damping efficiency of multi-unit particle dampers under random excitation, both the stationary and nonstationary type. High-fidelity simulation studies are conducted with a variable number of multi-unit dampers ranging from 1 to 100, with the magnitude of the “dead-space” nonlinearity being a random variable with a prescribed probability distribution spanning a feasible range of parameters. Results of the computational studies are calibrated with carefully conducted experiments with single-unit/single-particle, single-unit/multi-particle, and multiple-unit/multi-particle dampers. It is shown that a wide latitude exists in the trade-off between high vibration attenuation over a narrow range of damper gap size versus slightly reduced attenuation over a much broader range. The optimum configuration can be achieved through the use of multiple particle dampers designed in accordance with the procedure presented in the paper. A semi-active algorithm is introduced to improve the rms level reduction, as well as the peak response reduction. The utility of the approach is demonstrated through numerical simulation studies involving broadband stationary random excitations, as well as highly nonstationary excitations resembling typical earthquake ground motions.

1.
Masri
,
S. F.
, 1967, “
Effectiveness of Two-Particle Impact Damper
,”
J. Acoust. Soc. Am.
0001-4966,
41
, pp.
1533
1554
.
2.
Masri
,
S. F.
, 1967, “
Motion and Stability of Two-Particle Single-Container Impact Dampers
,”
ASME J. Appl. Mech.
0021-8936,
34
, pp.
506
507
.
3.
Masri
,
S. F.
, 1970, “
Periodic Excitation of Multiple-Unit Impact Dampers
,”
J. Engrg. Mech. Div.
0044-7951,
96
(
5
), pp.
1195
1207
.
4.
Masri
,
S. F.
, 1970, “
General Motion of Impact Dampers
,”
J. Acoust. Soc. Am.
0001-4966,
47
(
1
), pp.
229
237
.
5.
Christodoulou
,
L.
, and
Venables
,
J. D.
, 2003, “
Multifunctional Material Systems: The First Generation
,”
JOM
1047-4838,
55
(
12
), pp.
39
45
.
6.
Vecchio
,
K. S.
, 2005, “
Synthetic Multifunctional Metallic-Intermetallic Laminate Composites
,”
JOM
1047-4838,
57
(
3
), pp.
25
31
.
7.
Masri
,
S. F.
, and
Ibrahim
,
A. M.
, 1973, “
Stochastic Excitation of a Simple System With Impact Damper
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
1
, pp.
337
346
.
8.
Masri
,
S. F.
, and
Ibrahim
,
A. M.
, 1973, “
Response of the Impact Damper to Stationary Random Excitation
,”
J. Acoust. Soc. Am.
0001-4966,
53
(
1
), pp.
200
211
.
9.
Papalou
,
A.
, and
Masri
,
S. F.
, 1996, “
Performance of Particle Dampers Under Random Excitation
,”
ASME J. Vibr. Acoust.
0739-3717,
118
(
4
), pp.
614
621
.
10.
Papalou
,
A.
, and
Masri
,
S. F.
, 1996, “
Response of Impact Dampers With Granular Materials Under Random Excitation
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
25
(
3
), pp.
253
267
.
11.
Papalou
,
A.
, and
Masri
,
S. F.
, 1998, “
An Experimental Investigation of Particle Dampers Under Harmonic Excitation
,”
J. Vib. Control
1077-5463,
4
, pp.
361
379
.
12.
Masri
,
S. F.
, and
Caughey
,
T. K.
, 1966, “
On the Stability of the Impact Damper
,”
ASME J. Appl. Mech.
0021-8936,
33
(
3
), pp.
586
592
.
13.
Masri
,
S. F.
, 1978, “
Response of Multidegree-of-Freedom System to Nonstationary Random Excitation
,”
ASME J. Appl. Mech.
0021-8936,
45
(
3
), pp.
649
656
.
14.
Masri
,
S. F.
,
Miller
,
R. K.
,
Dehghanyar
,
T. J.
, and
Caughey
,
T. K.
, 1989, “
Active Parameter Control of Nonlinear Vibrating Structures
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
658
666
.
15.
Nudehi
,
S.
,
Mukherjee
,
R.
, and
Shaw
,
S. W.
, 2006, “
Active Vibration Control of a Flexible Beam Using a Buckling-Type End Force
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
, pp.
278
286
.
16.
Karyeaclis
,
M. P.
, and
Caughey
,
T. K.
, 1989, “
Stability of Semi-Active Impact Damper: Part I—Global Behavior
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
926
929
.
17.
Karyeaclis
,
M. P.
, and
Caughey
,
T. K.
, 1989, “
Stability of Semi-Active Impact Damper: Part II—Periodic Solutions
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
930
940
.
18.
Abdel
,
Gawad M.
, 1991, “
Passive Vibration Damping With Non-Cohesive Granular Materials
,” in
Proceedings of Damping, San Diego, CA, 13–15 February 1991
, pp.
1
14
.
19.
Araki
,
Y.
,
Yokomichi
,
I.
, and
Inoue
,
J.
, 1985, “
Impact Damper With Granular Materials (2nd Report, Both Sides Impact in a Vertical Oscillating System)
,”
Bull. JSME
0021-3764,
241
, pp.
1466
1472
.
20.
Araki
,
Y.
,
Jinnouchi
,
Y.
, and
Inoue
,
J.
, 1988, “
Impact Damper With Granular Materials
,” ASME PVP Div., 133, pp. 879–893.
21.
Araki
,
Y.
,
Jinnouchi
,
Y.
,
Inoue
,
J.
, and
Yokomichi
,
I.
, 1989, “
Indicial Response of Impact Damper With Granular Material
,” Seismic Eng., 182, pp. 73–79.
22.
Azar
,
R. C.
, and
Crossley
,
F. R. E.
, 1977, “
Digital Simulation of Impact Phenomenon in Spur Gear Systems
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
792
798
.
23.
Bapat
,
C. N.
,
Popplewell
,
N.
, and
McLachlan
,
K.
, 1983, “
Stable Periodic Motions of an Impact Pair
,”
J. Sound Vib.
0022-460X,
87
(
1
), pp.
19
40
.
24.
Bapat
,
C. N.
, and
Sankar
,
S.
, 1985, “
Single Unit Impact Damper in Free and Forced Vibration
,”
J. Sound Vib.
0022-460X,
99
(
1
), pp.
85
94
.
25.
Bapat
,
C. N.
, and
Sankar
,
S.
, 1985, “
Multiunit Impact Damper—re-Examined
,”
J. Sound Vib.
0022-460X,
103
(
4
), pp.
457
469
.
26.
Bapat
,
C. N.
, 1995, “
The General Motion of an Inclined Impact Damper With Friction
,”
J. Sound Vib.
0022-460X,
184
(
3
), pp.
417
427
.
27.
Bell
,
L. H.
, and
Bell
,
D. H.
, 1994,
Industrial Noise Control: Fundamentals and Applications
,
Marcel Dekker
,
New York
.
28.
Beranek
,
L. L.
, 1977,
Noise and Vibration Control
,
McGraw-Hill
,
New York
.
29.
Blazejczyk
Okolewska B.
, and
Peterka
,
F.
, 1998, “
An Investigation of the Dynamic System With Impacts
,”
Chaos, Solitons Fractals
0960-0779,
9
(
8
), pp.
1321
1338
.
30.
Bourinet
,
J.
, and
Hou
,
D.
, 1999, “
A Dynamic Stiffness Analysis of Damped Tubes Filled With Granular Material
,”
Comput. Struct.
0045-7949,
73
, pp.
395
406
.
31.
Brown
,
G. V.
, and
North
,
C. M.
, 1987, “
The Impact Damped Harmonic Oscillator in Free Decay
,” NASA TM 89897.
32.
Cempel
,
C.
, 1975, “
Receptance Model of the Multi-Unit Vibration Impact Neutralizer (Muvin)
,”
J. Sound Vib.
0022-460X,
40
(
2
), pp.
249
266
.
33.
Cempel
,
C.
, and
Lotz
,
G.
, 1993, “
Efficiency of Vibrational Energy Dissipation by Moving Shot
,”
J. Struct. Eng.
0733-9445,
119
(
9
), pp.
2642
2652
.
34.
Chaterjee
,
S.
,
Mallik
,
A. K.
, and
Ghosh
,
A.
, 1995, “
On Impact Dampers for Non-Linear Vibrating Systems
,”
J. Sound Vib.
0022-460X,
187
(
3
), pp.
403
420
.
35.
Chaterjee
,
S.
,
Mallik
,
A. K.
, and
Ghosh
,
A.
, 1996, “
Impact Dampers for Controlling Self-Excited Oscillation
,”
J. Sound Vib.
0022-460X,
193
(
5
), pp.
1003
1014
.
36.
Chen
,
T.
,
Mao
,
K.
,
Huang
,
X.
, and
Wang
,
M. Y.
, 2001, “
Dissipation Mechanisms of Nonobstructive Particle Damping Using Discrete Element Method
,”
Proceedings of SPIE International Symposium on Smart Structures and Materials
, Vol.
4331
of
Damping and Isolation
, pp.
294
301
.
37.
Chikatani
,
Y.
, and
Suehiro
,
A.
, 1991, “
Reduction of Idling Rattle Noise in Trucks
,” SAE Paper No. 911044, pp.
49
56
.
38.
Choy
,
P. K.
,
Liu
,
C. K.
,
Liao
,
W. H.
, and
Wang
,
Y.
, 2004, “
High Speed Pick and Place Apparatus
,” US Patent No. 6.758.113 B2.
39.
Cleary
,
P. W.
, 2000, “
DEM Simulation of Industrial Particle Flows: Case Studies of Dragline Excavators, Mixing in Tumblers and Centrifugal Mills
,”
Powder Technol.
0032-5910,
109
, pp.
83
104
.
40.
Collette
,
F.
,
Huynh
,
D.
, and
Semercigil
,
S. E.
, 2000, “
Further Results With Tuned Absorber-Impact Damper Combination
,”
Proc. of the International Modal Analysis Conference, San Antonio, TX, 7–10 February 2000
, Vol.
1
, IMAC pp.
404
410
.
41.
Comparin
,
R. J.
, and
Singh
,
R.
, 1989, “
Non-Linear Frequency Response Characteristics of an Impact Pair
,”
J. Sound Vib.
0022-460X,
134
(
2
), pp.
259
290
.
42.
Comparin
,
R. J.
, and
Singh
,
R.
, 1990, “
An Analytical Study of Automotive Neutral Gear Rattle
,”
ASME J. Mech. Des.
1050-0472,
112
, pp.
237
245
.
43.
Comparin
,
R. J.
, and
Singh
,
R.
, 1990, “
Frequency Response of Multi-Degree-of-Freedom System With Clearances
,”
J. Sound Vib.
0022-460X,
142
, pp.
101
124
.
44.
Cundall
,
P. A.
, and
Struck
,
O. D.
, 1979, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
0016-8505,
29
, pp.
47
65
.
45.
Yang
,
D. C. H.
, and
Lin
,
J. Y.
, 1987, “
Hertzian Damping, Tooth Friction and Bending Elasticity in Gear Impact Dynamics
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
189
196
.
46.
de Souza
,
S. L. T.
, and
Caldas
,
I. L.
, 2001, “
Basins of Attraction and Transient Chaos in a Gear-Rattling Model
,”
J. Vib. Control
1077-5463,
7
, pp.
849
862
.
47.
de Souza
,
S. L. T.
, and
Caldas
,
I. L.
, 2004, “
Controlling Chaotic Orbits in Mechanical Systems With Impacts
,”
Chaos, Solitons Fractals
0960-0779,
19
, pp.
171
178
.
48.
Diaz
,
A.
, and
Mukherjee
,
R.
, 2006, “
Modal Disparity Enhancement Through Optimal Insertion of Non-structural Masses
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
1
), pp.
1
7
.
49.
Diaz
,
A.
, and
Mukherjee
,
R.
, 2006, “
A Topology Optimization Problem in Control of Structures Using Modal Disparity
,”
ASME J. Mech. Des.
1050-0472,
128
(
3
), pp.
536
541
.
50.
Dokainish
,
M. A.
, and
Elmaraghy
,
H.
, 1973, “
Optimum Design Parameters for Impact Dampers
,”
The ASME Publications Design Engineering and Technical Conference
,
61
, pp.
1
7
.
51.
Dubowsky
,
S.
, and
Freudenstein
,
F.
, 1971, “
Dynamic Analysis of Mechanical Systems With Clearances, Part 1: Formation of Dynamic Model
,”
ASME J. Eng. Ind.
0022-0817,
93
, pp.
305
309
.
52.
Dubowsky
,
S.
, and
Freudenstein
,
F.
, 1971, “
Dynamic Analysis of Mechanical Systems With Clearances, Part 2: Dynamic Response
,”
ASME J. Eng. Ind.
0022-0817,
93
, pp.
310
316
.
53.
Duffy
,
K. P.
,
Brown
,
G. V.
, and
Mehmed
,
O.
, 1998, “
Impact Damping of Rotating Cantilever Plates
,”
3rd National Turbine Engine High Cycle Fatigue Conference, San Antonio, TX, 2–5 February 1998
.
54.
Duffy
,
K. P.
,
Bagley
,
R. L.
, and
Mehmed
,
O.
, 2000, “
On a Self-Tuning Impact Vibration Damper for Rotating Turbomachinery
,” NASA TM-2000–210215, AIAA Paper 2000–3100,
AIAA Joint Propulsion Conference
.
55.
Duffy
,
K. P.
, 2005, “
Self-Tuning Impact Damper for Rotating Blades
,”
J. Acoust. Soc. Am.
0001-4966,
117
(
5
), p.
2690
.
56.
Duffy
,
K. P.
,
Bagley
,
L.
, and
Mehmed
,
O.
, 2001, “
A Self-Tuning Impact Damper for Rotating Blades
,” NASA Tech Briefs TSP LEW-168333. pp.
1
15
.
57.
Duffy
,
K. P.
,
Mehmed
,
O.
, and
Johnson
,
D.
, 2001, “
Self-Tuning Impact Dampers for Fan and Turbine Blades
,”
6th National Turbine Engine High Cycle Fatigue Conference, Wright-Patterson AFB, Ohio, 5–8 March 2001
.
58.
Duffy
,
K. P.
, and
Mehmed
,
O.
, 2002, “
Self-Tuning Impact Dampers for Turbine Blades
,”
7th National Turbine Engine High Cycle Fatigue Conference, Palm Beach Gardens, FL, 14–17 May 2002
.
59.
Ekwaro
Osire S.
, and
Desen
,
I. C.
, 2001, “
Experimental Study on an Impact Vibration Absorber
,”
J. Vib. Control
1077-5463,
7
, pp.
475
493
.
60.
Ema
,
S.
, and
Marui
,
E.
, 1994, “
A Fundamental Study on Impact Dampers
,”
Int. J. Mach. Tools Manuf.
0890-6955,
34
(
3
), pp.
407
421
.
61.
Ema
,
S.
, and
Marui
,
E.
, 1996, “
Damping Characteristics of an Impact Damper and its Application
,”
Int. J. Mach. Tools Manuf.
0890-6955,
36
(
3
), pp.
293
306
.
62.
Ema
,
S.
, and
Marui
,
E.
, 2000, “
Suppression of Chatter Vibration of Boring Tools Using Impact Dampers
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp.
1141
1156
.
63.
Evesque
,
P.
, 1992, “
Shaking Dry Powders and Grains
,”
Contemp. Phys.
0010-7514,
33
(
4
), pp.
245
261
.
64.
Erlikh
,
L. B.
, 1953, “
Vibration Absorber With Impact Action and its Use in Machine Tools
,”
Eng. Dig. (Toronto)
0013-7901,
14
, pp.
31
32
.
65.
Fan
,
L. S.
, and
Zhu
,
C.
, 2005,
Principles of Gas-Solid Flows
,
Cambridge University Press
,
Cambridge, UK
.
66.
Fandrich
,
M.
, and
Hogue
,
C.
, 1995, “
An Experimental Study of Rigid Body Impacts
,” in
Contact Mechanics
,
M.
Raous
et al.
(eds.)
Plenum
,
New York
, pp.
389
396
.
67.
Fayed
,
M. E.
, and
Otten
,
L.
, 1997,
Handbook of Powder Science and Technology
,
Chapman & Hall
,
New York
.
68.
Flint
,
E. M.
, 1999, “
Experimental Measurements of Particle Damping Effectiveness Under Centrifugal Loads
,”
Proceedings of the Fourth National Turbine Engine High Cycle Fatigue Conference, Monterey, CA, 9–11 February 1999
, pp.
1
6
.
69.
Flint
,
E. M.
,
Ruhl
,
E.
, and
Olson
,
S. E.
, 2000, “
Experimental Centrifuge Testing and Analytical Studies of Particle Damping Behavior
,”
5th National Turbine Engine High Cycle Fatigue Conference, Chandler, AZ, 7–9 March 2000
.
70.
Fowler
,
B. L.
,
Flint
,
E. M.
, and
Olson
,
S. E.
, 2000, “
Effectiveness and Predictability of Particle Damping
,” In Smart Structures and Materials 2000: Damping and Isolation,
Proc. SPIE
0277-786X,
3989
, pp.
356
367
.
71.
Flint
,
E. M.
,
Lindler
,
J.
, and
Olson
,
S. E.
, 2001, “
Particle Damping Under Centrifugal Loading
,”
6th National Turbine Engine High Cycle Fatigue Conference, Palm Beach Gardens, FL, 14–17 May 2002
.
72.
Fowler
,
B. L.
,
Flint
,
E. M.
, and
Olson
,
S. E.
, 2000, “
Effectiveness and Predictability of Particle Damping
,” Proceedings of SPIE, Smart Structures and Materials, Damping and Isolation,
Proc. SPIE
0277-786X,
3989
, pp.
356
367
.
73.
Fowler
,
B. L.
,
Flint
,
E. M.
, and
Olson
,
S. E.
, 2001, “
Design Methodology for Particle Damping
,” Proceedings of SPIE, The International Society for Optical Engineering, Smart Structures and Materials,
Proc. SPIE
0277-786X,
4331
, pp.
186
197
.
74.
Fricke
,
J. R.
, 2000, “
Lodengraf Damping—an Advanced Vibration Damping Technology
,”
Shock Vib.
1070-9622,
34
(
7
), pp.
22
27
.
75.
Friend
,
R. D.
, and
Kinra
,
V. K.
, 1999, “
Measurement and Analysis of Particle Impact Damping
,”
in Proceedings of SPIE Conf. on Passive Damping and Isolation, San Jose, CA, 23–29 January 1999
, pp.
20
31
.
76.
Friend
,
R. D.
, and
Kinra
,
V. K.
, 2000, “
Particle Impact Damping
,”
J. Sound Vib.
0022-460X,
233
(
1
), pp.
93
118
.
77.
Goldsmith
,
W.
, 1985,
Impact: the Theory and Physical Behavior of Colliding Solids
,
Dover
,
Mineola, NY
.
78.
Grubin
,
C.
, 1956, “
On the Theory of the Acceleration Damper
,”
ASME J. Appl. Mech.
0021-8936,
23
(
3
), pp.
373
378
.
79.
Hamilton
,
H. R.
,
Riggs
,
G. S.
, and
Pickett
,
J. S.
, 2000, “
Increased Damping in Cantilevered Traffic Signal Structures
,”
J. Struct. Eng.
0733-9445,
126
(
4
), pp.
530
537
.
80.
Heiman
,
M. S.
,
Sherman
,
P. J.
, and
Bajaj
,
A. K.
, 1987, “
On the Dynamics and Stability of an Inclined Impact Pair
,”
J. Sound Vib.
0022-460X,
114
(
3
), pp.
535
547
.
81.
Herbert
,
R. G.
, and
McWhannell
,
D. C.
, 1977, “
Shape and Frequency Composition of Pulses From an Impact Pair
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
513
518
.
82.
Hogue
,
C.
, and
Newland
,
D.
, 1994, “
Efficient Computer Simulation of Moving Granular Particles
,”
Powder Technol.
0032-5910,
78
(
1
), pp.
51
66
.
83.
Hollkamp
,
J. J.
, and
Gordon
,
R. W.
, 1998, “
Experiments With Particle Damping
,” Proceedings of SPIE D The International Society for Optical Engineering. Smart Structures and Materials, Passive Damping and Isolation,
Proc. SPIE
0277-786X,
3327
, pp.
2
12
.
84.
Hollkamp
,
J. J.
,
Bagley
,
R. L.
, and
Gordon
,
R. W.
, 1999, “
A Centrifugal Pendulum Absorber for Rotating, Hollow Engine Blades
,”
J. Sound Vib.
0022-460X,
219
(
3
), pp.
539
549
.
85.
Holmes
,
P. J.
, 1982, “
The Dynamics of Repeated Impacts With a Sinusoidally Vibrating Table
,”
J. Sound Vib.
0022-460X,
84
(
2
), pp.
173
189
.
86.
Housner
,
G. W.
,
Bergman
,
L. A.
,
Caughey
,
T. K.
,
Chassiakos
,
A. G.
,
Claus
,
R. O.
,
Masri
,
S. F.
,
Skelton
,
R. E.
,
Soong
,
T. T.
,
Spencer
,
B. F.
, and
Yao
,
J. T. P.
, 1997, “
Special Issue: Structural Control: Past, Present and Future
,”
J. Eng. Mech.
0733-9399,
123
(
9
), pp.
897
971
.
87.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
, 1975, “
Coefficient of Restitution Interpreted as Damping in Vibro-impact
,”
ASME J. Appl. Mech.
0021-8936,
42
, pp.
440
445
.
88.
Hutter
,
K.
, and
Rajagopal
,
K.
, 1994, “
On Flows of Granular Materials
,”
Continuum Mech. Thermodyn.
0935-1175,
6
, pp.
81
139
.
89.
Ivanov
,
A. P.
, 1993, “
Stabilization of an Impact Oscillator Near Grazing Incidence Owing to Resonance
,”
J. Sound Vib.
0022-460X,
162
(
3
), pp.
562
565
.
90.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge U.P.
,
Cambridge, UK
.
91.
Kaper
,
H. G.
, 1961, “
The Behavior of a Spring Mass System Provided With a Discontinuous Dynamic Vibration Absorber
,”
Appl. Sci. Res., Sect. A
0365-7132,
10
(
1
), pp.
369
383
.
92.
Karagiannis
,
K.
, and
Pfeiffer
,
F.
, 1991, “
Theoretical and Experimental Investigations of Gear-Rattling
,”
Nonlinear Dyn.
0924-090X,
2
, pp.
367
387
.
93.
Kataoka
,
M.
,
Ohno
,
S.
, and
Sugimoto
,
T.
, 1991, “
A Two-Degree-of-Freedom System Including a Clearance Two-Step Hardening Spring
,”
JSME Int. J., Ser. II
0914-8817,
34
, pp.
345
354
.
94.
Kelly
,
S. G.
, 2000,
Fundamentals of Mechanical Vibrations
,
McGraw Hill
,
New York
.
95.
Kim
,
D. J.
,
Guibas
,
L. J.
, and
Shin
,
S. Y.
, 1998, “
Fast Collision Detection Among Multiple Moving Spheres
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
4
(
3
), pp.
230
242
.
96.
Kim
,
T. C.
, and
Singh
,
R.
, 2001, “
Dynamic Interactions Between Loaded and Unloaded Gear Pairs Under Rattle Conditions
,”
SAE Trans.
0096-736X,
110
(
6
), pp.
1934
1943
.
97.
Kim
,
T. C.
,
Rook
,
T. E.
, and
Singh
,
R.
, 2003, “
Effect of Smoothening Functions on the Frequency Response of an Oscillator With Clearance Non-Linearity
,”
J. Sound Vib.
0022-460X,
263
, pp.
665
678
.
98.
Kim
,
T. C.
,
Rook
,
T. E.
, and
Singh
,
R.
, 2005, “
Super- and Sub-harmonic Response Calculations for a Torsional System With Clearance Non-Linearity Using the Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
281
, pp.
965
993
.
99.
Lenci
,
S.
,
Demeio
,
L.
, and
Petrini
,
M.
, 2006, “
Response Scenario and Nonsmooth Features in the Nonlinear Dynamics of an Impacting Inverted Pendulum
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
(
1
), pp.
56
64
.
100.
Lieber
,
P.
, and
Jensen
,
D. P.
, 1945, “
An Acceleration Damper: Development, Design, and Some Applications
,”
Trans. ASME
0097-6822, pp.
523
530
.
101.
Liu
,
A. Q.
,
Wang
,
B.
,
Choo
,
Y. S.
, and
Ong
,
K. S.
, 2000, “
The Effective Design of Bean Bag as a Vibroimpact Damper
,”
Shock Vib.
1070-9622,
7
(
6
), pp.
343
354
.
102.
Luo
,
G. W.
, and
Xie
,
J. H.
, 1998, “
Hopf Bifurcations of a Two-Degree-of-Freedom Vibro-Impact System
,”
J. Sound Vib.
0022-460X,
213
(
3
), pp.
391
480
.
103.
Luo
,
G. W.
, and
Xie
,
J. H.
, 2002, “
Hopf Bifurcations and Chaos of a Two-Degree-of-Freedom Vibro-Impact System in Two Strong Resonance Cases
,”
Int. J. Non-Linear Mech.
0020-7462,
37
(
1
), pp.
19
34
.
104.
Ma
,
S.
, and
Semercigil
,
S. E.
, 1997, “
A Modified Passive Tuned Absorber for Secondary Systems Under Random Excitation
,”
J. Sound Vib.
0022-460X,
208
(
3
), pp.
349
366
.
105.
Maley
,
S.
, and
Sun
,
C. T.
, 1999, “
Particulate Enhanced Damping in Sandwich Structures
,” Advances in Aerospace Materials and Structures, AD-58, pp. 53–64.
106.
Maley
,
S.
, 2001, “
Particulate Enhanced Damping of Sandwich Structures
,” Ph.D. thesis, Purdue University.
107.
Mao
,
K. M.
,
Wang
,
M. Y.
,
Xu
,
Z. W.
, and
Chen
,
T. N.
, 2004, “
Simulation and Characterization of Particle Damping in Transient Vibrations
,”
ASME J. Vibr. Acoust.
0739-3717,
126
(
2
), pp.
202
211
.
108.
Mao
,
K. M.
,
Xu
,
Z.
,
Wang
,
M. Y.
, and
Chen
,
T. N.
, 2003, “
Efficient Computation of Particle Motions in Discrete Element Modeling of Particle Damping
,”
Proc. of Eighth International Symposium on Plasticity and Impact Mechanics, Whistler, Canada, 16–20 July 2003
, pp.
994
1005
.
109.
Masri
,
S. F.
, 1969, “
Analytical and Experimental Studies of Multiple-Unit Impact Dampers
,”
J. Acoust. Soc. Am.
0001-4966,
45
(
5
), pp.
1111
1117
.
110.
Masri
,
S. F.
, 1972, “
Forced Vibration of a Class of Non-Linear Two-Degree-of-Freedom Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
7
, pp.
663
674
.
111.
Mishra
,
B. K.
, and
Murty
,
C. V. R.
, 2001, “
On the Determination of Contact Parameters for Realistic Dem Simulations of Ball Mills
,”
Powder Technol.
0032-5910,
115
, pp.
290
297
.
112.
Moon
,
F. C.
, 1998,
Applied Dynamics with Applications to Multi-Body and Mechatronic Systems
,
Wiley
,
New York
.
113.
Nayfeh
,
S.
,
Verdirame
,
J.
, and
Varanasi
,
K.
, 2002, “
Damping of Flexural Vibration by Coupling to Low-Density Granular Materials
,”
9th SPIE International Symposium on Smart Structures and Materials, San Diego, Ca, 17–21 March 2002
, pp.
158
167
.
114.
Nordmark
,
A. B.
, 1991, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X,
145
(
2
), pp.
279
297
.
115.
Oledzki
,
A. A.
,
Siwicki
,
I.
, and
Wisniewski
,
J.
, 1999, “
Impact Dampers in Application for Tube, Rod and Rope Structures
,”
Mech. Mach. Theory
0094-114X,
34
, pp.
243
253
.
116.
Padmanabhan
,
C.
, and
Singh
,
R.
, 1995, “
Dynamics of a Piecewise Non-Linear System Subject to Dual Harmonic Excitation Using Parametric Continuation
,”
J. Sound Vib.
0022-460X,
184
(
5
), pp.
767
799
.
117.
Padmanabhan
,
C.
,
Barlow
,
R. C.
,
Rook
,
T. E.
, and
Singh
,
R.
, 1995, “
Computational Issues Associated With Gear Rattle Analysis
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
185
192
.
118.
Paget
,
A. L.
, 1937, “
Vibration in Steam Turbine Buckets and Damping by Impacts
,”
Engineering (London)
0013-7782,
143
, pp.
305
307
.
119.
Pang
,
C.
,
Popplewell
,
N.
, and
Semercigil
,
S. E.
, 1989, “
An Overview of a Bean Bag Dampers Effectiveness
,”
J. Sound Vib.
0022-460X,
133
(
2
), pp.
359
363
.
120.
Panossian
,
H. V.
, 1989, “
Non-Obstructive Impact Damping Applications for Cryogenic Environments
,” in
Proceedings of Damping O89, West Palm Beach, FL, 8–10 February 1989
, Vol.
KBC
, pp.
1
9
.
121.
Panossian
,
H. V.
, 1990, “
Structural Damping/Acoustic Attenuation Optimization Via Nopd
,” JANNAF Propulsion Meeting.
122.
Panossian
,
H. V.
, 1991, “
An Overview of Nopd: A Passive Damping Technique
,”
Shock Vib.
1070-9622,
1
(
6
), pp.
4
10
.
123.
Panossian
,
H. V.
, 1992, “
Structural Damping Enhancement via Non-Obstructive Particle Damping Technique
,”
ASME J. Vibr. Acoust.
0739-3717,
114
(
1
), pp.
101
105
.
124.
Panossian
,
H. V.
, 1991, “
Nonobstructive Particle Damping (Nopd) Performance Under Compaction Forces
,” Machi. Dyn. Element Vib., 36, pp. 17–20.
125.
Papalou
,
A.
, 1993, “
Analytical and Experimental Studies of Particle Dampers
,” Ph.D. thesis, Civil Engineering Department, University of Southern California.
126.
Pascal
,
M.
, 2006, “
Dynamics and Stability of a Two-Degree-of-Freedom Oscillator With an Elastic Stop
,”
J. Comput. Nonlinear Dyn.
1555-1423,
1
(
1
), pp.
94
102
.
127.
Pfeiffer
,
F.
, and
Kunert
,
A.
, 1990, “
Rattling Models From Deterministic to Stochastic Processes
,”
Nonlinear Dyn.
0924-090X,
1
, pp.
63
74
.
128.
Pinotti
,
P. C.
, and
Sadek
,
M. M.
, 1970, “
Design Procedure and Charts for the Impact Damper
,”
Proceedings of the 11th International Machine Tool Design and Research Conference, Birmingham, UK, September 1970
, Vol.
A
, pp.
181
195
.
129.
Popplewell
,
N.
,
Bapat
,
C. N.
, and
McLachlan
,
K.
, 1983, “
Stable Periodic Vibroimpacts of an Oscillator
,”
J. Sound Vib.
0022-460X,
87
(
1
), pp.
41
59
.
130.
Popplewell
,
N.
, and
Semercigil
,
S. E.
, 1989, “
Performance of the Bean Bag Impact Damper for a Sinusoidal External Force
,”
J. Sound Vib.
0022-460X,
133
(
2
), pp.
193
223
.
131.
Popplewell
,
N.
, and
Liao
,
M.
, 1991, “
A Simple Design Procedure for Optimum Impact Dampers
,”
J. Sound Vib.
0022-460X,
146
(
3
), pp.
519
526
.
132.
Reed
,
H. H.
, 1967, “
Hanging Chain Impact Dampers: A Simple Model of Damping Tall, Flexible Structures
,”
Wind Effects on Buildings and Structures, Proceedings of Internal Research Seminar, Ottawa, Canada, February 1967
.
133.
Richards
,
E.
, and
Lenzi
,
A.
, 1984, “
On the Prediction of Impact Noise, vii: The Structural Damping of Machinery
,”
J. Sound Vib.
0022-460X,
97
(
4
), pp.
549
586
.
134.
Rigaud
,
E.
, and
Perret-Liaudet
,
J.
, 2003, “
Experiments and Numerical Results on Non-Linear Vibrations of an Impacting Hertzian Contact. Part 1: Harmonic Excitation
,”
J. Sound Vib.
0022-460X,
265
(
2
), pp.
309
327
.
135.
Rook
,
T. E.
, and
Singh
,
R.
, 1995, “
Dynamic Analysis of a Reverse-Idler Gear Pair With Concurrent Clearances
,”
J. Sound Vib.
0022-460X,
182
(
2
), pp.
303
322
.
136.
Ryzhkov
,
D. I.
, 1953, “
Vibration Damper for Metal Cutting
,”
Eng. Dig. (Toronto)
0013-7901,
14
, p.
246
.
137.
Sadek
,
M. M.
, and
Mills
,
B.
, 1966, “
The Application of the Impact Damper to the Control of Machine Tool Chatter
,”
Proceedings of the 7th International Machine Tool Design and Research Conference, Birmingham, UK, January 1966
, pp.
243
257
.
138.
Sadek
,
M. M.
, and
Mills
,
B.
, 1970, “
Effect of Gravity on the Performance of an Impact Damper: Part 1. Steady-State Motion
,”
J. Mech. Eng. Sci.
0022-2542,
12
(
4
), pp.
268
277
.
139.
Sadek
,
M. M.
, and
Williams
,
C. J. H.
, 1970, “
Effect of Gravity on the Performance of an Impact Damper: Part 2. Stability of Vibrational Modes
,”
J. Mech. Eng. Sci.
0022-2542,
12
(
4
), pp.
278
287
.
140.
Sadek
,
M. M.
, 1970, “
Impact Dampers for Controlling Vibration in Machine Tools
,” Machinery, 120, pp. 52–161.
141.
Saeki
,
M.
, 2002, “
Impact Damping With Granular Materials in a Horizontally Vibrating System
,”
J. Sound Vib.
0022-460X,
251
(
1
), pp.
153
161
.
142.
Saluena
,
C.
,
Poschel
,
T.
,
Esipov
,
S. E.
, and
Simonian
,
S.
, 1998, “
Dissipative Properties of Granular Ensembles
,” Proc. SPIE Conference on Smart Structures and Materials: Passive Damping and Isolation,
Proc. SPIE
0277-786X,
3327
, pp.
23
29
.
143.
Saluena
,
C.
,
Esipov
,
S. E.
,
Poschel
,
T.
, and
Simonian
,
S.
, 1998, “
Dissipative Properties of Granular Ensembles
,” Proceedings of SPIE, The International Society for Optical Engineering. Smart Structures and Material: Passive Damping and Isolation,
Proc. SPIE
0277-786X,
3327
, pp.
23
29
.
144.
Saluena
,
C.
,
Esipov
,
S. E.
,
D.
,
R.
, and
Panossian
,
H.
, 1999, “
On Modeling of Arrays of Passive Granular Dampers
,” Proceedings of SPIE D The International Society for Optical Engineering. Smart Structures and Material: Passive Damping and Isolation,
Proc. SPIE
0277-786X,
3672
, pp.
32
42
.
145.
Saluena
,
C.
,
Poschel
,
T.
, and
Esipov
,
S. E.
, 1999, “
Dissipative Properties of Vibrated Granular Materials
,”
Phys. Rev. E
1063-651X,
59
(
4
), pp.
4422
4425
.
146.
Saluenya
,
C.
,
Esipov
,
S. E.
,
Poeschel
,
T.
, and
Simonian
,
S. S.
, 1998, “
Dissipative Properties of Granular Ensembles
,” Proceedings of SPIE Conference on Smart Structures,
Proc. SPIE
0277-786X,
3327
, pp.
18
26
.
147.
Salvino
,
L.
,
Dupont
,
P.
, and
McDaniel
,
J. G.
, 1998, “
Evaluation of Granular-Fill Damping in Shock-Loaded Box Beams
,”
Proceedings of the 69th Shock and Vibration Symposium, St. Paul, MN, October 1998
, pp.
1
10
.
148.
Sato
,
T.
,
T.
,
K. A. S. M. Y.
, 1995, “
Vibration Isolation in a System Using Granular Medium
,”
JSME Int. J., Ser. C
1340-8062,
38
(
3
), pp.
434
440
.
149.
Semercigil
,
S. E.
,
Collette
,
F.
, and
Huynh
,
D.
, 2002, “
Experiments With Tuned Absorber-Impact Damper Combination
,”
J. Sound Vib.
0022-460X,
256
(
1
), pp.
179
188
.
150.
Sharif-Bakhtar
,
M.
, and
Shaw
,
S. W.
, 1988, “
The Dynamic Response of a Centrifugal Pendulum Vibration Absorber With Motion-Limiting Stops
,”
J. Sound Vib.
0022-460X,
126
(
2
), pp.
221
235
.
151.
Shaw
,
S. W.
, and
Homles
,
P. J.
, 1983, “
Periodically Forced Linear Oscillator With Impacts: Chaos and Long-Period Motions
,”
Phys. Rev. Lett.
0031-9007,
51
(
8
), pp.
623
626
.
152.
Shaw
,
J.
, and
Shaw
,
S. W.
, 1989, “
The Onset of Chaos in a Two-Degree-of-Freedom Impacting System
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
168
174
.
153.
Shaw
,
S. W.
, and
Pierre
,
C.
, 2006, “
The Dynamic Response of Tuned Impact Absorbers for Rotating Flexible Structures
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
(
1
), pp.
13
24
.
154.
Simonian
,
S. S.
, 1995, “
Smart Structures and Material: Passive Damping
,” Proceedings of SPIE, The International Society for Optical Engineering,
Proc. SPIE
0277-786X,
2445
, pp.
149
160
.
155.
Singh
,
R.
,
Xie
,
H.
, and
Comparin
,
R. J.
, 1989, “
Analysis of an Automotive Neutral Gear Rattle
,”
J. Sound Vib.
0022-460X,
131
, pp.
177
196
.
156.
Singh
,
A.
,
Mukherjee
,
R.
,
Turner
,
K.
, and
Shaw
,
S. W.
, 2006, “
MEMS Implementation of Axial and Follower End Forces
,”
J. Sound Vib.
0022-460X,
286
(
3
), pp.
637
644
.
157.
Skipor
,
E.
, and
Bain
,
L. J.
, 1980, “
Application of Impact Damping to Rotary Printing Equipment
,”
ASME J. Mech. Des.
1050-0472,
102
, pp.
338
343
.
158.
Sommer
,
R.
, 1995, “
Sports Equipment for Ball Games Having an Improved Attenuation of Oscillations and Kick-Back Pulses and an Increased Striking Force
,” U.S. Patent 5,454,562.
159.
Sun
,
J.
,
Sun
,
H.
,
Chow
,
L.
, and
Richards
,
E.
, 1986, “
Predictions of Total Loss Factors of Structures, Part ii: Loss Factors of Sand-Filled Structure
,”
J. Sound Vib.
0022-460X,
104
(
2
), pp.
243
257
.
160.
Thomas
,
M. D.
,
Knight
,
W. A.
, and
Sadek
,
M. M.
, 1975, “
The Impact Damper as a Method Improving Cantilever Boring Bars
,”
ASME J. Eng. Ind.
0022-0817,
97
(
3
), pp.
859
866
.
161.
Thompson
,
J. M. T.
, 1983, “
Chaos After Period-Doubling Bifurcations in the Resonance of an Impact Oscillator
,”
Phys. Lett.
0375-9601,
91A
, pp.
5
8
.
162.
Thompson
,
J. M. T.
,
S.
,
H. B.
, 1986,
Nonlinear Dynamics and Chaos
,
Wiley
,
New York
.
163.
Tianning
,
C.
,
Kuanmin
,
M.
,
Xieqing
,
H.
, and
Wang
,
M. Y.
, 2001, “
Dissipation Mechanisms of Non-Obstructive Particle Damping Using Discrete Element Method
,”
Proceedings of SPIE International Symposium on Smart Structures and Materials
, pp.
1
8
.
164.
Tomlinson
,
G. R.
,
Pritchard
,
D.
, and
Wareing
,
R.
, 2001, “
Damping Characteristics of Particle Dampers: Some Preliminary Results
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
215
, pp.
253
257
.
165.
Tsuji
,
Y.
,
Tanaka
,
T.
, and
Ishida
,
T.
, 1992, “
Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe
,”
Powder Technol.
0032-5910,
71
, pp.
239
250
.
166.
Valuswami
,
M. A.
,
C.
,
F. R. E.
, 1975, “
Multiple Impacts of a Ball Between Two Plates, Part 1: Some Experimental Observations
,”
ASME J. Eng. Ind.
0022-0817,
97
, pp.
820
827
.
167.
Varanasi
,
K.
, and
Nayfeh
,
S.
, 2003, “
Vibration Damping by Coupling to Lossy Low-Wave-Speed Media
,” in
SPIE Smart Structures and Materials 2003: Damping and Isolation, SPIE
.
168.
Vemuri
,
B. C.
,
Chen
,
L.
,
Vu-Quoc
,
L.
,
Zhang
,
X.
, and
Walton
,
O.
, 1998, “
Efficient and Accurate Collision Detection for Granular Flow Simulation
,”
Graph. Models Image Process.
1077-3169,
60
, pp.
403
422
.
169.
Venugopal
,
R.
, and
Rajamani
,
R. K.
, 2001, “
3-D Simulation of Charge Motion in Tumbling Mills by the Discrete Element Method
,”
Powder Technol.
0032-5910,
115
, pp.
157
166
.
170.
Mansour
,
W. M.
, and
Teixeira Filho
,
D. R.
, 1974, “
Impact Dampers With Coulomb Friction
,”
J. Sound Vib.
0022-460X,
33
(
3
), pp.
247
265
.
171.
Wallascheck
,
J.
, 1990, “
Dynamics of Non-Linear Automobile Shock-Absorbers
,”
Int. J. Non-Linear Mech.
0020-7462,
25
, pp.
299
308
.
172.
Wang
,
B.
, and
Yang
,
M.
, 2000, “
Damping of Honeycomb Sandwich Beams
,”
J. Mater. Process. Technol.
0924-0136,
105
, p.
67
.
173.
Warburton
,
G. B.
, 1957, “
Discussion of the Theory of the Acceleration Damper
,”
ASME J. Appl. Mech.
0021-8936,
24
, pp.
322
324
.
174.
Wen
,
G. L.
, 2001, “
Codimension-2 hopf Bifurcation of a Two-Degree-of-Freedom Vibro-Impact System
,”
J. Sound Vib.
0022-460X,
242
(
3
), pp.
475
485
.
175.
Whiston
,
G.
, 1992, “
Singularities in Vibro-Impact Dynamics
,”
J. Sound Vib.
0022-460X,
152
(
3
), pp.
427
460
.
176.
Wiercigroch
,
M.
, and
Dekraker
,
B.
, 2000,
Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities
,
World Scientific
,
Singapore
.
177.
Wolf
,
D. E.
, 1996,
Modeling and Computer Simulation of Granular Media
,
K. H.
Hoffmann
and
M.
Schreiber
(eds.),
Springer
,
Heidelberg
.
178.
Worden
,
K.
, and
Tomlinson
,
G.
, 2001,
Nonlinearity in Structural Dynamics: Detection, Identification and Modeling
,
Inst. of Physics
,
London
.
179.
Xie
,
J. H.
, 1996, “
Codimension Two Bifurcations and hopf Bifurcations of an Impacting Vibrating System
,”
Appl. Math. Mech.
0253-4827,
17
(
1
), pp.
65
75
.
180.
Xu
,
Z. W.
,
Wang
,
M. Y.
, and
Chen
,
T. N.
, 2005, “
Particle Damping for Passive Vibration Suppression: Numerical Modeling and Experimental Investigation
,”
J. Sound Vib.
0022-460X,
279
, pp.
1097
1120
.
181.
Yokomichi
,
I.
,
Araki
,
Y.
,
Jinnouchi
,
Y.
, and
Inoue
,
J.
, 1996, “
Impact Dampers With Granular Materials for Multibody System
,”
ASME J. Pressure Vessel Technol.
0094-9930,
118
, pp.
95
103
.
182.
Zhang
,
X.
, and
Vu-Quoc
,
L.
, 2001, “
Modeling the Dependence of the Coefficient of Restitution on the Impact Velocity in Elasto-Plastic Collisions
,”
Int. J. Impact Eng.
0734-743X,
27
, pp.
317
341
.
You do not currently have access to this content.