Vibration control can improve the performance of many axially moving material systems (e.g., web handling machines and tape drives). Researchers have used Lyapunov analysis to develop vibration stabilizing controllers for distributed parameter models of axially moving material systems. Both the material and regular time derivatives have been used in these analyses despite the fact that they give different results. This paper proves that for a pinned axially moving string model: (i) Lyapunov stability analysis using the material derivative incorrectly predicts that a time-varying functional is constant and (ii) neglect of the coupled domain in boundary control analysis is ill posed and incorrectly predicts bounded forced response and exponentially decaying transients.

1.
Wang
,
J.
, and
Li
,
Q.
, 2004, “
Active Vibration Control Methods of Axially Moving Materials—A Review
,”
J. Vib. Control
1077-5463,
10
(
4
), pp.
475
491
.
2.
Kim
,
C. W.
,
Hong
,
K. S.
, and
Park
,
H.
, 2005, “
Boundary Control of an Axially Moving String: Actuator Dynamics Included
,”
J. Mech. Sci. Technol.
,
19
(
1
), pp.
40
50
.
3.
Hong
,
K. S.
,
Kim
,
C. W.
, and
Hong
,
K. T.
, 2004, “
Boundary Control of an Axially Moving Belt System in a Thin-Metal Production Line
,”
Int. J. Control Autom.
,
2
(
1
), pp.
55
67
.
4.
Choi
,
J. Y.
,
Hong
,
K. S.
, and
Yang
,
K. J.
, 2004, “
Exponential Stabilization of an Axially Moving Tensioned Strip by Passive Damping and Boundary Control
,”
J. Vib. Control
1077-5463,
10
(
5
), pp.
661
682
.
5.
Yang
,
K. J.
,
Hong
,
K. S.
, and
Matsuno
,
F.
, 2004, “
Robust Adaptive Boundary Control of an Axially Moving String Under a Spatio Temporally Varying Tension
,”
J. Sound Vib.
0022-460X,
273
(
4–5
), pp.
1007
1029
.
6.
Fung
,
R. F.
,
Wu
,
J. W.
, and
Lu
,
P. Y.
, 2002,“
Adaptive Boundary Control of an Axially Moving String System
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
3
), pp.
435
440
.
7.
Fung
,
R. F.
,
Chou
,
J. H.
, and
Kuo
,
Y. L.
, 2002, “
Optimal Boundary Control of an Axially Moving Material System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
(
1
), pp.
55
61
.
8.
Fung
,
R. F.
, and
Tseng
,
C. C.
, 1999, “
Boundary Control of an Axially Moving String via Lyapunov Method
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
(
1
), pp.
105
110
.
9.
Fung
,
R. F.
,
Wu
,
J. W.
, and
Wu
,
S. L.
, 1999, “
Stabilization of an Axially Moving String by Nonlinear Boundary Feedback
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
(
1
), pp.
117
121
.
10.
Lee
,
S. Y.
, and
Mote
,
C. D.
, 1996, “
Vibration Control of an Axially Moving String by Boundary Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
118
(
1
), pp.
66
74
.
11.
Lee
,
S. Y.
, and
Mote
,
C. D.
, 1999, “
Wave Characteristics and Vibration Control of Translating Beams by Optimal Boundary Damping
,”
ASME J. Vibr. Acoust.
0739-3717,
121
(
1
), pp.
18
25
.
12.
Shahruz
,
S. M.
, 1998, “
Boundary Control of the Axially Moving Kirchhoff String
,”
Automatica
0005-1098,
34
(
10
), pp.
1273
1277
.
13.
Shahruz
,
S. M.
, and
Kurmaji
,
D. A.
, 1997, “
Vibration Suppression of a Nonlinear Axially Moving String by Boundary Control
,”
J. Sound Vib.
0022-460X,
201
(
1
), pp.
145
152
.
14.
Chao
,
P. C. P.
, and
Lai
,
C. L.
, 2003, “
Boundary Control of an Axially Moving String via Fuzzy Sliding-Mode Control and Fuzzy Neural Network Methods
,”
J. Sound Vib.
0022-460X,
262
(
4
), pp.
795
813
.
15.
Renshaw
,
A.
,
Rahn
,
C.
,
Wickert
,
J.
, and
Mote
,
C. D.
, 1998, “
Energy and Conserved Functionals for Axially Moving Materials
,”
ASME J. Vibr. Acoust.
0739-3717,
120
(
2
), pp.
634
636
.
16.
de Queiroz
,
M.
,
Dawson
,
D.
,
Rahn
,
C.
, and
Zhang
,
F.
, 1999, “
Adaptive Vibration Control of an Axially Moving String
,”
ASME J. Vibr. Acoust.
0739-3717,
121
, pp.
41
49
.
17.
Li
,
Y.
, and
Rahn
,
C.
, 2000, “
Adaptive Vibration Isolation for Axially Moving Beams
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
4
), pp.
491
428
.
18.
Li
,
Y.
,
Aron
,
D.
, and
Rahn
,
C.
, 2002, “
Adaptive Vibration Isolation for Axially Moving Strings: Theory and Experiment
,”
Automatica
0005-1098,
38
(
3
), pp.
379
390
.
19.
Huang
,
J. S.
,
Chao
,
P. C. P.
,
Fung
,
R. F.
,
Lai
,
Cheng-Liang
, 2003, “
Parametric Control of an Axially Moving String via Fuzzy Sliding-Mode and Fuzzy Neural Network Methods
,”
J. Sound Vib.
0022-460X,
264
(
1
), pp.
177
201
.
20.
Lee
,
S. Y.
, and
Mote
,
C. D.
, 1997, “
A Generalized Treatment of the Energetics of Translating Continua. 1. Strings and Second Order Tensioned Pipes
,”
J. Sound Vib.
0022-460X,
204
(
5
), pp.
717
734
.
21.
Nagarkatti
,
S.
,
Zhang
,
F.
,
Costic
,
B.
,
Dawson
,
D.
, and
Rahn
,
C.
, 2002, “
Speed Tracking and Transverse Vibration Control of an Axially Accelerating Web
,”
Mech. Syst. Signal Process.
0888-3270,
16
(
2/3
), pp.
337
356
.
22.
Rahn
,
C.
,
Mechatronic Control of Distributed Noise and Vibration: A Lyapunov Approach
,
Springer-Verlag
,
Berlin
, 2001.
23.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1989, “
On the Energetics of Axially Moving Continua
,”
J. Acoust. Soc. Am.
0001-4966,
85
(
3
), pp.
1365
1368
.
24.
Zhu
,
W. D.
, 2002, “
Control Volume and System Formulations for Translating Media and Stationary Media With Moving Boundaries
,”
J. Sound Vib.
0022-460X,
254
(
1
), pp.
189
201
.
25.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1990, “
Classical Vibration Analysis of Axially-Moving Continua
,”
ASME J. Appl. Mech.
0021-8936,
57
(
3
), pp.
738
744
.
You do not currently have access to this content.