Abstract

The effect of fluid viscosity on the developing process of the instability in an over-hung flexible rotor partially filled with fluid, the dynamical behavior of the rotor system while the instability occurs, the unstable region of rotational speeds, and the whirl frequency of the rotor system in the unstable region of rotational speeds, are experimentally investigated in this paper. It is shown that when the rotational speed is just over the reduced first critical speed of the fluid-filled rotor system that is less than the first critical speed of empty rotor system, the unstable motion occurs. The rotor system in the unstable speed region does not whirl at either a constant rotational speed or the first critical speed of the empty rotor system, the whirl frequency of the rotor system in the unstable speed region, dominated by the fluid-filled ratio and weakly depending on the viscosity of fluid, linearly increases with the rotational speed. There exists a hysteresis range of rotational speeds at the upper bound of the unstable speed region, which is not caused by the rotor transient motion when passing through the unstable speed region. As the fluid viscosity increases, both the unstable speed region and the hysteresis region narrow. The influence of the fluid viscosity on the unstable speed region of a rotor filled with a high viscosity fluid must be considered.

References

1.
Kollmann
,
F. G.
, 1962, “
Experimentelle und Theoretische Untersuchungen Uber die Kritischen Drehzahlen Flussigkeitsgefullter Hohlkorper
,”
Forsch. Geb. Ingenieurwes.
0367-2204,
28
, pp.
115
123
;
Kollmann
,
F. G.
, 1962,
Forsch. Geb. Ingenieurwes.
0367-2204 ,
28
, pp.
147
153
.
2.
Ehrich
,
E. F.
, 1967, “
The Influence of Trapped Fluids on High Speed Rotor Vibration
,”
ASME J. Eng. Ind.
0022-0817,
89
, pp.
806
812
.
3.
Kirk
,
R. G.
,
Mondy
,
M. E.
, and
Murphy
,
R. C.
, 1984, “
Theory and Guidelines to Proper Coupling Design for Rotor Dynamic Considerations
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
106
, pp.
129
138
.
4.
Wolf
,
J. A.
, Jr.
, 1968, “
Whirl Dynamics of a Rotor Partially Filled With Liquid
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
676
682
.
5.
Lichtenberg
,
G.
, 1982, “
Vibrations of an Elastically Mounted Spinning Rotor Partially Filled With Liquid
,”
ASME J. Mech. Des.
1050-0472,
104
, pp.
389
396
.
6.
Wohlbruck
,
R.
, 1985, “
Stability of a Rotor Whose Cavity has an Arbitrary Meridian and is Partially Filled With Fluid
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
107
, pp.
440
445
.
7.
Zhu
,
C. S.
, 2002, “
Theoretical and Experimental Investigation on the Instability of an Over-hung Rigid Rotor Partially Filled With Fluid
,”
Proceedings of the 7th International Congress on Sound and Vibration
, Germany, 4–7 July 2000, pp.
947
954
.
8.
Zhu
,
C. S.
, 2001, “
Quasi-3D Rotating Fluid Model and its Application in the Analysing the Stability of a Rotor Partially Filled With Fluid
,”
Chin. J. Appl. Mech.
,
18
, pp.
26
33
.
9.
Hendricks
,
S. L.
, and
Morton
,
J. B.
, 1979, “
Stability of a Rotor Partially Filled With a Viscous Incompressible Fluid
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
913
918
.
10.
Hendricks
,
S. L.
, 1986, “
Stability of a Clamped Free-rotor Partially Filled With Liquid
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
166
172
.
11.
Saito
,
S.
, and
Someya
,
T.
, 1980, “
Self-excited Vibration of a Rotational Hollow Shaft Partially Filled With Liquid
,”
ASME J. Mech. Des.
1050-0472,
102
, pp.
185
192
.
12.
Kaneto
,
S.
, and
Hayama
,
S.
, 1983, “
Oscillations of Liquid Partially Filling a Rotating Cylinder
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
49
, pp.
370
390
.
13.
Holm-Christensen
,
O.
, and
Träger
,
K.
, 1991, “
A Note of Instability Caused by Liquid Motions
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
804
811
.
14.
Zhu
,
C. S.
, 2001, “
Stability Analysis of Symmetrical Rotor Partially Filled With a Viscous Incompressible Fluid
,”
Int. J. Rotating Mach.
1023-621X,
7
, pp.
301
310
.
15.
Berman
,
A. S.
,
Lundgren
,
T. S.
, and
Cheng
,
C. A.
, 1985, “
Asynchronous Whirl in a Rotating Cylinder Partially Filled With Liquid
,”
J. Fluid Mech.
0022-1120,
150
, pp.
311
327
.
16.
Inoue
,
J.
,
Jinnouchi
,
Y.
, and
Araki
,
Y.
, 1985, “
Forced Wave Motion of Liquid Partially Filling as High-speed Rotor
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
107
, pp.
447
452
.
17.
Colding-Jorgensen
,
J.
, 1991, “
Limit Cycle Vibration Analysis of a Long Rotating Cylinder Partially Filled With Liquid
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
113
, pp.
563
567
.
18.
Kaneko
,
S.
, and
Hayama
,
S.
, 1985, “
Self-excited Oscillation of a Hollow Rotational Shaft Partially Filled With a Liquid
,”
Bull. JSME
0021-3764,
28
, pp.
2994
3001
.
19.
Ota
,
H.
,
Ishida
,
Y.
,
Sato
,
A.
, and
Yamada
,
T.
, 1986, “
Experiments on Vibrations of a Hollow Rotor Partially Filled With Fluid
,”
Bull. JSME
0021-3764,
29
, pp.
3520
3529
.
20.
Cheng
,
C. A.
,
Berman
,
A. S.
, and
Lundgren
,
T. S.
, 1985, “
Asynchronous Instability of a Rotational Centrifuge Partially Filled With Fluid
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
777
782
.
21.
Zhu
,
C. S.
, 2002, “
Experimental Investigation on the Instability of an Over-hung Rigid Centrifuge Rotor Partially Filled With Fluid
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
483
491
.
You do not currently have access to this content.