A novel method of experimental sensitivity analysis for nonlinear system identification of mechanical systems is examined here. It has been shown previously that embedded sensitivity functions, which are quadratic algebraic products of frequency response function data, can be used to identify structural design modifications for reducing vibration levels. It is shown here that embedded sensitivity functions can also be used to characterize and identify mechanical nonlinearities. Embedded sensitivity functions represent the rate of change of the response with variation in input amplitude, and yield estimates of system parameters without being explicitly dependent on them. Frequency response functions are measured at multiple input amplitudes and combined using embedded sensitivity analysis to extract spectral patterns for characterizing systems with stiffness and damping nonlinearities. By comparing embedded sensitivity functions with finite difference frequency response sensitivities, which incorporate the amplitude-dependent behavior of mechanical nonlinearities, models can be determined using an inverse problem that uses system sensitivity to estimate parameters. Expressions for estimating nonlinear parameters are derived using Taylor series expansions of frequency response functions in conjunction with the method of harmonic balance for periodic signals. Using both simulated and experimental data, this procedure is applied to estimate the nonlinear parameters of a two degree-of-freedom model and a vehicle exhaust system to verify the approach.

1.
Adams
,
D. E.
, and
Allemang
,
R. J.
, 1998, “
Survey of Nonlinear Detection and Identification Techniques for Experimental Vibrations
,”
Proceedings of ISMA23
,
269
281
.
2.
Adams
,
D. E.
, and
Allemang
,
R. J.
, 2000, “
A Frequency Domain Method for Estimating the Parameters of a Non-Linear Structural Dynamic Model Through Feedback
,”
Mech. Syst. Signal Process.
0888-3270,
14
(
4
), pp.
637
656
.
3.
Worden
,
K.
,
Manson
,
G.
, and
Tomlinson
,
G. R.
, 1997, “
A Harmonic Probing Algorithm for the Multi-Input Voltera Series
,”
J. Sound Vib.
0022-460X,
201
(
1
), pp.
67
84
.
4.
Chatterjee
,
A.
, and
Vyas
,
Ns.
, “
Nonlinear Parameter Estimation in Multi-Degree-of-Freedom Systems Using Multi-Input Volterra Series Mechanical Systems and Signal Processing
” (in press).
5.
Khan
,
A. A.
, and
Vyas
,
N. S.
, 2001, “
Nonlinear Bearing Stiffness Parameter Estimation in Flexible Rotor-Bearing Systems Using Volterra and Wiener Approach
,”
Probab. Eng. Mech.
0266-8920,
16
, pp.
137
157
.
6.
Gupta
,
P.
, and
Shinha
,
N. K.
, 1999, “
An Improved Approach for Nonlinear System Identification Using Neural Networks
,”
J. Franklin Inst.
0016-0032,
336
, pp.
721
734
.
7.
Bradley
,
E.
,
Easley
,
M.
, and
Stolle
,
R.
, 2001, “
Reasoning About Nonlinear System Identification
,”
Artif. Intell.
0004-3702,
133
, pp.
139
188
.
8.
Jagannathan
,
S.
, and
Lewis
,
F. L.
, “
Identification of Nonlinear Dynamical Systems Using Multilayered Neural Networks
,” PII: S0005-1098 (96) 00118-5.
9.
Worden
,
K.
, and
Tomlinson
,
G. R.
, “
Nonlinearity in Structural Dynamics
,” IoP 2001.
10.
Bendat
,
J.
, 1990,
Nonlinear System Analysis and Identification from Random Data
,
Wiley
, New York.
11.
Chatterjee
,
A.
, and
Cusumano
,
J.
, 2003, “
Asymptotic Parameter Estimation via Implicit Averaging on a Nonlinear Extended System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
11
18
.
12.
Thothadri
,
M.
,
Casas
,
R.
,
Moon
,
F.
,
D’Andrea
,
R.
, and
Johnson
,
C.
, 2003, “
Nonlinear System Identification of Multi-Degree-of-Freedom Systems
,”
Nonlinear Dyn.
0924-090X,
32
, pp.
307
322
.
13.
Yoshimura
,
Y.
, 1984, “
Design Sensitivity Analysis of Frequency Response in Machine Structures
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
, pp.
119
125
.
14.
Lin
,
R. M.
, and
Ewins
,
D. J.
, 1994, “
Analytical Model Improvement Using Frequency Response Functions
,”
Mech. Syst. Signal Process.
0888-3270,
8
, pp.
437
458
.
15.
Lin
,
R. M.
, and
Lim
,
M. K.
, 1997, “
Derivation of Structural Design Sensitivities From Vibration Test Data
,”
J. Sound Vib.
0022-460X,
201
, pp.
613
631
.
16.
Vanhonacker
,
P.
, 1980, “
Differential and Difference Sensitivities of Natural Frequencies and Mode Shapes of Mechanical Structures
,”
AIAA J.
0001-1452,
18
, pp.
1511
1514
.
17.
Belle
,
H. V.
, 1982, “
Higher Order Sensitivities in Structural Systems
,”
AIAA J.
0001-1452,
20
, pp.
286
288
.
18.
Liu
,
A. Q.
,
Lim
,
S. P.
, and
Liew
,
K. M.
, 1993, “
Sensitivity Analysis of Complex Dynamic System Modeling
,”
JSME Int. J., Ser. A
1340-8046,
36
, pp.
209
213
.
19.
Yang
,
C.
,
Adams
,
D.
,
Yoo
,
S.
, and
Kim
,
H.
, 2004, “
An Embedded Sensitivity Approach for Diagnosing System-Level Noise and Vibration Problems
,”
J. Sound Vib.
0022-460X,
269
, pp.
1063
1081
.
20.
Yang
,
C.
,
Adams
,
D. E.
,
Yoo
,
S.
, and
Kim
,
H.
, 2003, “
Embedded Sensitivity Functions for Structural Dynamic Systems
,”
Proc. of the XXI IMAC
.
21.
Masri
,
S. F.
, and
Caughey
,
T. K.
, 1979, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
J. Appl. Mech.
0021-8936,
46
, pp.
433
447
.
22.
Yang
,
C.
,
Adams
,
D. E.
, and
Ciray
,
S.
, 2004, “
System Identification of Nonlinear Structures Using Embedded Sensitivity Functions
,”
Proc. of the XXII IMAC
.
You do not currently have access to this content.