The underlying principle for vibration confinement is to alter the structural vibration modes so that the corresponding modal components have much smaller amplitude in concerned area than in the remaining part of the structure. In this research, the state-of-the-art in vibration confinement technique is advanced in two correlated ways. First, a new eigenstructure assignment algorithm is developed to more directly suppress vibration in regions of interest. This algorithm is featured by the optimal selection of achievable eigenvectors that minimizes the eigenvector components at concerned region by using the Rayleigh Principle. Second, the active control input is applied through an active-passive hybrid piezoelectric network. With the introduction of circuitry elements, which are much easier to implement than changing or adding mechanical components, the state matrices can be reformed and the design space for eigenstructure assignment can be greatly enlarged. To maximize the system performance, a simultaneous optimization/optimal eigenvector assignment approach to decide the passive and active parameters concurrently is outlined. The merits of the proposed system and scheme are demonstrated and analyzed using numerical examples.

1.
Song, B.-K., and Jayasuriya, S., 1993, “Active Vibration Control Using Eigenvector Assignment for Mode Localization,” Proceedings of the American Control Conference, pp. 1020–1024.
2.
Choura
,
S.
,
1995
, “
Control of Flexible Structures With the Confinement of Vibrations
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
2
), pp.
155
164
.
3.
Shelley
,
F. J.
, and
Clark
,
W. W.
,
2000
, “
Experimental Application of Feedback Control to Localize Vibration
,”
ASME J. Vibr. Acoust.
,
122
(
2
), pp.
143
150
.
4.
Vakakis
,
A. F.
,
1994
, “
Passive Spatial Confinement of Impulsive Response in Coupled Nonlinear Beams
,”
AIAA J.
,
32
(
9
), pp.
1902
1910
.
5.
Vakakis
,
A. F.
,
Kounadis
,
A. N.
, and
Raftoyiannis
,
I. G.
,
1999
, “
Use of Non-Linear Localization for Isolating Structures From Earthquake-Induced Motions
,”
Earthquake Eng. Struct. Dyn.
,
28
(
1
), pp.
21
36
.
6.
Keane
,
A. J.
,
1995
, “
Passive Vibration Control via Unusual Geometries: The Application of Genetic Algorithm Optimization to Structural Design
,”
J. Sound Vib.
,
185
(
3
), pp.
441
453
.
7.
Allaei, D., and Tarnowski, D. J., 1997, “Enhancing the Performance of Constrained Layer Damping Confining Vibrational Energy,” Proceedings of ASME, Active/Passive Vibration Control and Nonlinear Dynamics of Structures, DE-Vol. 95/AMD-Vol. 223, pp. 31–46.
8.
Choura
,
S.
, and
Yigit
,
A. S.
,
1995
, “
Vibration Confinement in Flexible Structures by Distributed Feedback
,”
Comput. Struct.
,
54
(
3
), pp.
531
540
.
9.
Shelley
,
F. J.
, and
Clark
,
W. W.
,
1996
, “
Eigenvector Scaling for Mode Localization in Vibrating Systems
,”
J. Guid. Control Dyn.
,
19
(
6
), pp.
1342
1348
.
10.
Moore
,
B. C.
,
1976
, “
On the Flexibility Offered by State Feedback in Multi-Variable Systems Beyond Closed-Loop Eigenvalue Assignment
,”
IEEE Trans. Autom. Control
,
AC-21
(
5
), pp.
689
692
.
11.
Andry
,
A. N.
, Jr.
,
Shapiro
,
E. Y.
, and
Chung
,
J. C.
,
1983
, “
Eigenstructure Assignment for Linear Systems
,”
IEEE Trans. Aerosp. Electron. Syst.
,
AES-19
(
5
), pp.
711
729
.
12.
Kwon
,
B.-H.
, and
Youn
,
M.-J.
,
1987
, “
Eigenvalue-Generalized Eigenvector Assignment by Output Feedback
,”
IEEE Trans. Autom. Control
,
AC-32
(
5
), pp.
417
421
.
13.
Kim
,
H.-S.
, and
Kim
,
Y.
,
1999
, “
Partial Eigenstructure Assignment Algorithm in Flight Control System Design
,”
IEEE Trans. Aerosp. Electron. Syst.
,
35
(
4
), pp.
1403
1408
.
14.
Datta
,
B. N.
,
Elhay
,
S.
,
Ram
,
Y. M.
, and
Sarkissian
,
D. R.
,
2000
, “
Partial Eigenstructure Assignment for the Quadratic Pencil
,”
J. Sound Vib.
,
230
(
1
), pp.
101
110
.
15.
Shelley
,
F. J.
, and
Clark
,
W. W.
,
2000
, “
Active Mode Localization in Distributed Parameter Systems With Consideration of Limited Actuator Placement, Part 1: Theory
,”
ASME J. Vibr. Acoust.
,
122
(
2
), pp.
160
164
.
16.
Shelly
,
F. J.
, and
Clark
,
W. W.
,
2000
, “
Active Mode Localization in Distributed Parameter Systems With Consideration of Limited Actuator Placement, Part 2: Simulations and Experiments
,”
ASME J. Vibr. Acoust.
,
122
(
2
), pp.
165
168
.
17.
Corr
,
L. R.
, and
Clark
,
W. W.
,
1999
, “
Active and Passive Vibration Confinement Using Piezoelectric Transducers and Dynamic Vibration Absorbers
,”
Proc. SPIE
,
3668
, pp.
747
758
.
18.
Agnes
,
G. S.
,
1994
, “
Active/Passive Piezoelectric Vibration Suppression
,”
Proc. SPIE
,
2193
, pp.
24
34
.
19.
Kahn, S. P., and Wang, K. W., 1994, “Structural Vibration Controls via Piezoelectric Materials With Active-Passive Hybrid Networks,” Proceedings of ASME IMECE, DE75, pp. 187–194.
20.
Tsai
,
M. S.
, and
Wang
,
K. W.
,
1996
, “
Control of a Ring Structure With Multiple Active-Passive Hybrid Piezoelectric Networks
,”
Smart Mater. Struct.
,
5
(
5
), pp.
695
703
.
21.
Tang
,
J.
, and
Wang
,
K. W.
,
1999
, “
Vibration Control of Rotationally Periodic Structures Using Passive Piezoelectric Shunt Networks and Active Compensation
,”
ASME J. Vibr. Acoust.
,
121
(
3
), pp.
379
391
.
22.
Tang
,
J.
,
Liu
,
Y.
, and
Wang
,
K. W.
,
2000
, “
Semi-Active and Active-Passive Hybrid Structural Damping Treatments via Piezoelectric Materials
,”
Shock Vib. Dig.
,
32
(
3
), pp.
189
200
.
23.
Hagood
,
N. W.
, and
von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.
24.
Zhang
,
Q.
,
Slater
,
G. L.
, and
Allemang
,
R. J.
,
1990
, “
Suppression of Undesired Inputs of Linear Systems by Eigenspace Assignment
,”
J. Guid. Control Dyn.
,
13
(
2
), pp.
330
336
.
25.
Cunningham, T. B., 1980, “Eigenspace Selection Procedures for Closed-Loop Response Shaping With Modal Control,” Proceedings of the American Control Conference, pp. 178–186.
26.
Klema
,
V. C.
, and
Laub
,
A. J.
,
1980
, “
The Singular Value Decomposition: Its Computation and Some Applications
,”
IEEE Trans. Autom. Control
,
AC-25
(
2
), pp.
164
176
.
27.
Meirovitch, L., 1980, Computational Methods in Structural Dynamics, Sijthoff & Noorhoff.
28.
Hollkamp
,
J. J.
,
1994
, “
Multimodal Passive Vibration Suppression With Piezoelectric Materials and Passive Electrical Networks
,”
J. Intell. Mater. Syst. Struct.
,
5
(
1
), pp.
49
57
.
29.
Lewis, F. L., and Syrmos, V. L., 1995, Optimal Control, 2nd ED., Wiley, New York.
30.
Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, 1987, An American National Standard: IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, ANSI/IEEE Std 176-1987, New York.
You do not currently have access to this content.