Stability and bifurcation for the unsymmetrical, periodic motion of a horizontal impact oscillator under a periodic excitation are investigated through four mappings based on two switch-planes relative to discontinuities. Period-doubling bifurcation for unsymmetrical period-1 motions instead of symmetrical period-1 motion is observed. A numerical investigation for symmetrical, period-1 motion to chaos is completed. The numerical and analytical results of periodic motions are in very good agreement. The methodology presented in this paper is applicable to other discontinuous dynamic systems. This investigation also provides a better understanding of such an unsymmetrical motion in symmetrical discontinuous systems.

1.
Karagiannis
,
K.
, and
Pfeiffer
,
F.
,
1991
, “
Theoretical and Experimental Investigation of Gear Rattling
,”
Nonlinear Dyn.
,
2
, pp.
367
387
.
2.
Kahraman
,
A.
, and
Singh
,
R.
,
1990
, “
Nonlinear Dynamics of a Spur Gear Pair
,”
J. Sound Vib.
,
142
, pp.
49
75
.
3.
Sharif-Bakhtiar
,
M.
, and
Shaw
,
S. W.
,
1988
, “
The Dynamic Response of a Centrifugal Pendulum Absorber with Motion Limiting Stops
,”
J. Sound Vib.
,
126
, pp.
221
235
.
4.
Hendricks
,
F.
,
1983
, “
Bounce and Chaotic Motion in Impact Print Hammers
,”
IBM Journal
,
27
, pp.
273
280
.
5.
Tung
,
P. C.
, and
Shaw
,
S. W.
,
1988
, “
The Dynamics of an Impact Print Hammer
,”
ASME J. Vibr. Acoust.
,
110
, pp.
193
200
.
6.
Masri
,
S. F.
, and
Caughey
,
T. D.
,
1966
, “
On the Stability of the Impact Damper
,”
ASME J. Appl. Mech.
,
33
, pp.
586
592
.
7.
Senator
,
M.
,
1970
, “
Existence and Stability of Periodic Motions of a Harmonically Forced Impacting System
,”
J. Acoust. Soc. Am.
,
47
, pp.
1390
1397
.
8.
Bapat
,
C. N.
,
Popplewell
,
N.
, and
Mclachlan
,
K.
,
1983
, “
Stable Periodic Motion of an Impact Pair
,”
J. Sound Vib.
,
87
, pp.
19
40
.
9.
Bapat
,
C. N.
, and
Sankar
,
S.
,
1985
, “
Single Unit Impact Damper in Free and Forced Vibrations
,”
J. Sound Vib.
,
99
, pp.
85
94
.
10.
Bapat
,
C. N.
, and
Bapat
,
C.
,
1988
, “
Impact-pair under Periodic Excitation
,”
J. Sound Vib.
,
120
, pp.
53
61
.
11.
Shaw
,
S. W.
, and
Holmes
,
P. J.
,
1983
, “
A Periodically Forced Piecewise Linear Oscillator
,”
ASME J. Appl. Mech.
,
50
, pp.
129
155
.
12.
Shaw
,
S. W.
, and
Holmes
,
P. J.
,
1983
, “
A Periodically Forced Impact Oscillator
,”
J. Sound Vib.
,
90
, pp.
129
155
.
13.
Shaw
,
S. W.
,
1985
, “
Dynamics of Harmonically Excited Systems Having Rigid Amplitude Constraints, Part I-Subharmonic Motions and Local Bifurcations
,”
ASME J. Appl. Mech.
,
52
, pp.
453
458
.
14.
Shaw
,
S. W.
,
1985
, “
Dynamics of Harmonically Excited Systems Having Rigid Amplitude Constraints, Part II-Chaotic Motions and Global Bifurcations
,”
ASME J. Appl. Mech.
,
52
, pp.
459
464
.
15.
Whiston
,
G. S.
,
1987
, “
Global Dynamics of Vibro-Impacting Linear Oscillator
,”
J. Sound Vib.
,
118
, pp.
395
429
.
16.
Whiston
,
G. S.
,
1992
, “
Singularities in Vibro-Impact Dynamics
,”
J. Sound Vib.
,
152
, pp.
427
460
.
17.
Faole
,
S.
,
1994
, “
Analytical Determination of Bifurcation in an Impact Oscillator
,”
Proc. R. Soc. London, Ser. A
,
347
, pp.
353
365
.
18.
Han
,
R. P. S.
,
Luo
,
A. C. J.
, and
Deng
,
W.
,
1995
, “
Chaotic Motion of a Horizontal Impact Pair
,”
J. Sound Vib.
,
181
, pp.
231
250
.
19.
Luo
,
A. C. J.
, and
Han
,
R. P. S.
,
1996
, “
Dynamics of a Bouncing Ball with a Periodic Vibrating Table Revisited
,”
Nonlinear Dyn.
,
10
, pp.
1
18
.
20.
Li
,
G. X.
,
Rand
,
R. H.
, and
Moon
,
F. C.
,
1990
, “
Bifurcation and Chaos in a Forced Zero-Stiffness Impact Oscillator
,”
Int. J. Non-Linear Mech.
,
25
(
4
), pp.
414
432
.
You do not currently have access to this content.