Stability and bifurcation for the unsymmetrical, periodic motion of a horizontal impact oscillator under a periodic excitation are investigated through four mappings based on two switch-planes relative to discontinuities. Period-doubling bifurcation for unsymmetrical period-1 motions instead of symmetrical period-1 motion is observed. A numerical investigation for symmetrical, period-1 motion to chaos is completed. The numerical and analytical results of periodic motions are in very good agreement. The methodology presented in this paper is applicable to other discontinuous dynamic systems. This investigation also provides a better understanding of such an unsymmetrical motion in symmetrical discontinuous systems.
Issue Section:
Technical Papers
1.
Karagiannis
, K.
, and Pfeiffer
, F.
, 1991
, “Theoretical and Experimental Investigation of Gear Rattling
,” Nonlinear Dyn.
, 2
, pp. 367
–387
.2.
Kahraman
, A.
, and Singh
, R.
, 1990
, “Nonlinear Dynamics of a Spur Gear Pair
,” J. Sound Vib.
, 142
, pp. 49
–75
.3.
Sharif-Bakhtiar
, M.
, and Shaw
, S. W.
, 1988
, “The Dynamic Response of a Centrifugal Pendulum Absorber with Motion Limiting Stops
,” J. Sound Vib.
, 126
, pp. 221
–235
.4.
Hendricks
, F.
, 1983
, “Bounce and Chaotic Motion in Impact Print Hammers
,” IBM Journal
, 27
, pp. 273
–280
.5.
Tung
, P. C.
, and Shaw
, S. W.
, 1988
, “The Dynamics of an Impact Print Hammer
,” ASME J. Vibr. Acoust.
, 110
, pp. 193
–200
.6.
Masri
, S. F.
, and Caughey
, T. D.
, 1966
, “On the Stability of the Impact Damper
,” ASME J. Appl. Mech.
, 33
, pp. 586
–592
.7.
Senator
, M.
, 1970
, “Existence and Stability of Periodic Motions of a Harmonically Forced Impacting System
,” J. Acoust. Soc. Am.
, 47
, pp. 1390
–1397
.8.
Bapat
, C. N.
, Popplewell
, N.
, and Mclachlan
, K.
, 1983
, “Stable Periodic Motion of an Impact Pair
,” J. Sound Vib.
, 87
, pp. 19
–40
.9.
Bapat
, C. N.
, and Sankar
, S.
, 1985
, “Single Unit Impact Damper in Free and Forced Vibrations
,” J. Sound Vib.
, 99
, pp. 85
–94
.10.
Bapat
, C. N.
, and Bapat
, C.
, 1988
, “Impact-pair under Periodic Excitation
,” J. Sound Vib.
, 120
, pp. 53
–61
.11.
Shaw
, S. W.
, and Holmes
, P. J.
, 1983
, “A Periodically Forced Piecewise Linear Oscillator
,” ASME J. Appl. Mech.
, 50
, pp. 129
–155
.12.
Shaw
, S. W.
, and Holmes
, P. J.
, 1983
, “A Periodically Forced Impact Oscillator
,” J. Sound Vib.
, 90
, pp. 129
–155
.13.
Shaw
, S. W.
, 1985
, “Dynamics of Harmonically Excited Systems Having Rigid Amplitude Constraints, Part I-Subharmonic Motions and Local Bifurcations
,” ASME J. Appl. Mech.
, 52
, pp. 453
–458
.14.
Shaw
, S. W.
, 1985
, “Dynamics of Harmonically Excited Systems Having Rigid Amplitude Constraints, Part II-Chaotic Motions and Global Bifurcations
,” ASME J. Appl. Mech.
, 52
, pp. 459
–464
.15.
Whiston
, G. S.
, 1987
, “Global Dynamics of Vibro-Impacting Linear Oscillator
,” J. Sound Vib.
, 118
, pp. 395
–429
.16.
Whiston
, G. S.
, 1992
, “Singularities in Vibro-Impact Dynamics
,” J. Sound Vib.
, 152
, pp. 427
–460
.17.
Faole
, S.
, 1994
, “Analytical Determination of Bifurcation in an Impact Oscillator
,” Proc. R. Soc. London, Ser. A
, 347
, pp. 353
–365
.18.
Han
, R. P. S.
, Luo
, A. C. J.
, and Deng
, W.
, 1995
, “Chaotic Motion of a Horizontal Impact Pair
,” J. Sound Vib.
, 181
, pp. 231
–250
.19.
Luo
, A. C. J.
, and Han
, R. P. S.
, 1996
, “Dynamics of a Bouncing Ball with a Periodic Vibrating Table Revisited
,” Nonlinear Dyn.
, 10
, pp. 1
–18
.20.
Li
, G. X.
, Rand
, R. H.
, and Moon
, F. C.
, 1990
, “Bifurcation and Chaos in a Forced Zero-Stiffness Impact Oscillator
,” Int. J. Non-Linear Mech.
, 25
(4
), pp. 414
–432
.Copyright © 2002
by ASME
You do not currently have access to this content.