A Dynamic Finite Element (DFE) for vibrational analysis of rotating assemblages composed of beams is presented in which the complexity of the acceleration, due to the presence of gyroscopic, or Coriolis forces, is taken into consideration. The dynamic trigonometric shape functions of uncoupled bending and axial vibrations of an axially loaded uniform beam element are derived in an exact sense. Then, exploiting the Principle of Virtual Work together with the nodal approximations of variables, based on these dynamic shape functions, leads to a single frequency dependent stiffness matrix which is Hermitian and represents both mass and stiffness properties. A Wittrick-Williams algorithm, based on a Sturm sequence root counting technique, is then used as the solution method. The application of the theory is demonstrated by two illustrative examples of vertical and radial beams where the influence of Coriolis forces on natural frequencies of the clamped-free rotating beams is demonstrated by numerical results.

1.
Likins
,
P. W.
,
Barbera
,
F. J.
, and
Baddeley
,
Victor
,
1973
, “
Mathematical Modeling of Spinning Elastic Bodies for Modal Analysis
,”
AIAA J.
,
11
, pp.
1251
1258
.
2.
Simpson
,
A.
,
1973
, “
Calculation of Natural Frequencies and Modes of Steadily Rotating Systems: A Teaching Note
,”
Aeronaut. Q.
,
24
, pp.
139
146
.
3.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
,
12
, pp.
1337
1342
.
4.
Laurenson
,
R. M.
,
1976
, “
Modal Analysis of Rotating Flexible Structures
,”
AIAA J.
,
14
, No.
10
, pp.
1444
1450
.
5.
Hoa
,
S. V.
,
1979
, “
Vibration of a Rotating Beam With Tip Mass
,”
J. Sound Vib.
,
67
, No.
3
, pp.
369
381
.
6.
Hodges
,
D. H.
, and
Rutkowski
,
M. J.
,
1981
, “
Free-Vibration Analysis of Rotating Beams by a Variable-Order Finite-Element Method
,”
AIAA J.
,
19
, No.
11
, pp.
1459
1466
.
7.
Hashemi, S. M., Richard, M. J., and Dhatt, G., 1997, “A Dynamic Finite Element (DFE) Formulation for Free Vibration Analysis of Centrifugally Stiffened Uniform Beams,” Proceedings of 16th Canadian Congress of Applied Mechanics (CANCAM 1997), June 1–6, Québec, Québec, pp. 443–444.
8.
Wittrick
,
W. H.
, and
Williams
,
F. W.
,
1982
, “
On the Free Vibration Analysis of Spinning Structures by Using Discrete or Distributed Mass Models
,”
J. Sound Vib.
,
82
, No.
1
, pp.
1
15
.
9.
Hashemi, S. M., Richard, M. J., and Dhatt, G., 1997, “A Bernoulli-Euler Stiffness Matrix Approach for Vibrational Analysis of Spinning Linearly Tapered Beams,” 42nd ASME Gas Turbine Paper No. 97-GT-500.
10.
Williams
,
F. W.
, and
Wittrick
,
W. H.
,
1970
, “
An Automatic Computational Procedure for Calculating Natural Frequencies of Skeletal Structures
,”
Int. J. Mech. Sci.
,
12
, pp.
12781
12791
.
11.
Wittrick
,
W. H.
, and
Williams
,
F. W.
,
1971
, “
A General Algorithm for Computing Natural Frequencies of Elastic Structures
,”
Quarterly J. Mech. Appl. Math
24
, pp.
263
284
.
12.
Åkesson
,
B. Å.
,
1976
, “
Pfvibat—A Computer Program for Plane Frame Vibration Analysis by an Exact Method
,”
Int. J. Numer. Methods Eng.
,
10
, pp.
1221
1231
.
13.
Banerjee
,
J. R.
,
1989
, “
Coupled Bending-Torsional Dynamic Stiffness Matrix for Beam Elements
,”
Int. J. Numer. Methods Eng.
,
28
, pp.
1283
1298
.
14.
Hashemi, S. M., Richard, M. J., and Dhatt, G., 1996, “A Bernoulli-Euler Stiffness Matrix Approach for Vibrational Analysis of Linearly Tapered Beams,” Proceedings of Acoustics Week in Canada 1996, October 7–11, Calgary, Alberta, p. 87.
15.
Hashemi
,
S. M.
,
Richard
,
M. J.
, and
Dhatt
,
G.
,
1999
, “
A New Dynamic Finite Element (DFE) Formulation for Lateral Free Vibrations of Euler-Bernoulli Spinning Beams Using Trigonometric Shape Functions
,”
J. Sound Vib.
,
220
, No.
4
, pp.
602
623
.
16.
Hashemi, S. M., Richard, M. J., and Dhatt, G., 1998, “A Dynamic Finite Element (DFE) Approach for Coupled Bending-Torsional Vibrations of Beams,” Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Long Beach, CA, pp. 2614–2624, Paper No. 98-AIAA-2020.
17.
Hashemi, S. M., and Richard, M. J., 1998, “On the Coupled Bending-Torsional Natural Frequencies and Modes of Beams; A Frequency Dependent Dynamic Finite Element (DFE),” Proceedings of the Biennial Conference of the Canadian Society for Mechanical Engineering (CSME FORUM 1998), pp. 468–475.
18.
Bellezza, F., Lanari, L., and Ulivi, G., 1990, “Exact Modeling of the Flexible Slewing Link,” Proceedings of the 1990 IEEE International Conference on Robotics and Automation, May 13–18, Cincinnati, OH, pp. 734–739.
19.
Dhatt, G., and Touzot, G., 1981, “Une Présentation de la Méthode des Élémens Finis,” Maloine, S. A., ed., Paris et Les presses de L'Université Laval, Québec, pp. 100–103, in French.
20.
Bathe, K. J., 1982, Finite Element Procedures in Engineering Analysis, Englewood-Cliffs, Prentice-Hall, NJ.
21.
Howson
,
W. P.
, and
Williams
,
F. W.
,
1973
, “
Natural Frequencies of Frames Axially Loaded Timoshenko Members
,”
J. Sound Vib.
,
26
, No.
4
, pp.
503
515
.
22.
Hashemi, S. M., 1998, “Free Vibrational Analysis of Rotating Beam-Like Structures: A Dynamic Finite Element Approach,” Ph.D. Thesis, Department of Mechanical Engineering, Laval University, Québec, Canada.
23.
Hashemi, S. M., and Richard, M. J., 1999, “On the Natural Frequencies of Rotating Blades with Discontinuous Geometry: A Dynamic Finite Element (DFE) Formulation,” Proceedings of 17th Canadian Congress of Applied Mechanics (CANCAM 1999), May 30–June 3, Hamilton, Ontario, pp. 293–294.
24.
Argyris, J., and Mlejnek, H. P., 1991, Texts on Computational Mechanics, Volume V: Dynamic of Structures, Amsterdam, North Holland.
You do not currently have access to this content.