This paper presents an exact relationship between the natural frequencies of Reddy third-order plate theory and those of classical Kirchhoff plate theory for simply supported, polygonal isotropic plates, including rectangular plates. The relationship for the natural frequencies enables one to obtain the solutions of the third-order plate theory from the known Kirchhoff plate theory for the same problem. As examples, some vibration frequencies for rectangular and regular polygonal plates are determined using this relationship. [S0739-3717(00)01601-9]

1.
Kirchhoff
,
G.
,
1850
, “
Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe
,”
J. Angew. Math.
,
40
, pp.
51
88
.
2.
Reissner
,
E.
,
1944
, “
On the Theory of Bending of Elastic Plates
,”
J. Math. Phys.
,
23
, pp.
184
191
.
3.
Reissner
,
E.
,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
,
12
, pp.
69
77
.
4.
Hencky
,
H.
,
1947
, “
Uber die Berucksichtigung der Schubverzerrung in ebenen Platten
,”
Ing. Arch.
,
16
, pp.
72
76
.
5.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
,
18
, pp.
31
38
.
6.
Wittrick
,
W. H.
,
1973
, “
Shear Correction Factors for Orthotropic Laminates Under Static Load
,”
ASME J. Appl. Mech.
,
40
, pp.
302
304
.
7.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
51
, pp.
745
752
.
8.
Wang
,
C. M.
,
1994
, “
Natural Frequencies Formula for Simply Supported Mindlin Plates
,”
ASME J. Vibr. Acoust.
,
116
, pp.
536
540
.
9.
Wang
,
C. M.
,
1996
, “
Vibration Frequencies of Simply Supported Polygonal Sandwich Plates via Kirchhoff Solutions
,”
J. Sound Vib.
,
190
, pp.
255
260
.
10.
Reddy, J. N., 1997, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, Boca Raton, Florida.
11.
Reddy
,
J. N.
, and
Phan
,
N. D.
,
1985
, “
Stability and Vibration of Isotropic, Orthotropic and Laminated Plates According to a Higher-Order Shear Deformation Theory
,”
J. Sound Vib.
,
98
, pp.
157
170
.
12.
Reddy, J. N., 1999, Theory and Analysis of Elastic Plates, Taylor & Francis, Philadelphia, Pennsylvania.
13.
Conway, H. D., 1960, “Analogies Between the Buckling and Vibration of Polygonal Plates and Membranes,” Canadian Aeronautical Journal, pp. 263.
14.
Pnueli
,
D.
,
1975
, “
Lower Bounds to the Gravest and All Higher Frequencies of Homogeneous Vibrating Plates of Arbitrary Shape
,”
ASME J. Appl. Mech.
,
42
, pp.
815
820
.
15.
Leissa, A. W., 1993, Vibration of Plates, Edition by Acoustical Society of America (originally issued by NASA, 1969).
You do not currently have access to this content.