This paper presents an exact relationship between the natural frequencies of Reddy third-order plate theory and those of classical Kirchhoff plate theory for simply supported, polygonal isotropic plates, including rectangular plates. The relationship for the natural frequencies enables one to obtain the solutions of the third-order plate theory from the known Kirchhoff plate theory for the same problem. As examples, some vibration frequencies for rectangular and regular polygonal plates are determined using this relationship. [S0739-3717(00)01601-9]
Issue Section:
Technical Papers
1.
Kirchhoff
, G.
, 1850
, “Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe
,” J. Angew. Math.
,40
, pp. 51
–88
.2.
Reissner
, E.
, 1944
, “On the Theory of Bending of Elastic Plates
,” J. Math. Phys.
, 23
, pp. 184
–191
.3.
Reissner
, E.
, 1945
, “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,” ASME J. Appl. Mech.
, 12
, pp. 69
–77
.4.
Hencky
, H.
, 1947
, “Uber die Berucksichtigung der Schubverzerrung in ebenen Platten
,” Ing. Arch.
,16
, pp. 72
–76
.5.
Mindlin
, R. D.
, 1951
, “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,” ASME J. Appl. Mech.
, 18
, pp. 31
–38
.6.
Wittrick
, W. H.
, 1973
, “Shear Correction Factors for Orthotropic Laminates Under Static Load
,” ASME J. Appl. Mech.
, 40
, pp. 302
–304
.7.
Reddy
, J. N.
, 1984
, “A Simple Higher-Order Theory for Laminated Composite Plates
,” ASME J. Appl. Mech.
, 51
, pp. 745
–752
.8.
Wang
, C. M.
, 1994
, “Natural Frequencies Formula for Simply Supported Mindlin Plates
,” ASME J. Vibr. Acoust.
,116
, pp. 536
–540
.9.
Wang
, C. M.
, 1996
, “Vibration Frequencies of Simply Supported Polygonal Sandwich Plates via Kirchhoff Solutions
,” J. Sound Vib.
, 190
, pp. 255
–260
.10.
Reddy, J. N., 1997, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, Boca Raton, Florida.
11.
Reddy
, J. N.
, and Phan
, N. D.
, 1985
, “Stability and Vibration of Isotropic, Orthotropic and Laminated Plates According to a Higher-Order Shear Deformation Theory
,” J. Sound Vib.
, 98
, pp. 157
–170
.12.
Reddy, J. N., 1999, Theory and Analysis of Elastic Plates, Taylor & Francis, Philadelphia, Pennsylvania.
13.
Conway, H. D., 1960, “Analogies Between the Buckling and Vibration of Polygonal Plates and Membranes,” Canadian Aeronautical Journal, pp. 263.
14.
Pnueli
, D.
, 1975
, “Lower Bounds to the Gravest and All Higher Frequencies of Homogeneous Vibrating Plates of Arbitrary Shape
,” ASME J. Appl. Mech.
, 42
, pp. 815
–820
.15.
Leissa, A. W., 1993, Vibration of Plates, Edition by Acoustical Society of America (originally issued by NASA, 1969).
Copyright © 2000
by ASME
You do not currently have access to this content.