A multiharmonic frequency domain analysis combined with a Craig-Bampton component mode synthesis is presented to compute the dry friction damped forced response of blades. The accuracy of the analysis is established, for a cantilever beam with a dry friction damper attached, by comparison with experimental results and time domain analysis. The method has then been applied to a model fan blade damped by a blade to ground damper.
Issue Section:
Research Papers
1.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, John Wiley and Sons, New York.
2.
Griffin
J. H.
1980
, “Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils
,” ASME Journal of Engineering for Power
, Vol. 102
, pp. 329
–333
.3.
Lau
S. L.
Cheung
Y. K.
1981
, “Amplitude Incremental Variational Principal for Nonlinear Vibration of Elastic System
,” ASME Journal of Applied Mechanics
, Vol. 48
, pp. 959
–964
.4.
Lau
S. L.
Cheung
Y. K.
Wu
S. Y.
1982
, “Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear System
,” ASME Journal of Applied Mechanics
, Vol. 49
, pp. 849
–853
.5.
Lau
S. L.
Cheung
Y. K.
Wu
S. Y.
1983
, “Incremental Harmonic Balance Method With Multiple Time Scales for Nonlinear Aperiodic Vibrations
,” ASME Journal of Applied Mechanics
, Vol. 50
, pp. 871
–876
.6.
Pierre
C.
Ferri
A. A.
Dowell
E. H.
1985
, “Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,” ASME Journal of Applied Mechanics
, Vol. 52
, pp. 958
–964
.7.
Ferri
A. A.
1986
, “On the Equivalence of the Incremental Harmonic Balance Method and the Harmonic Balance-Newton Raphson Method
,” ASME Journal of Applied Mechanics
, Vol. 53
, pp. 455
–456
.8.
Urabe
M.
1965
, “Galerkin’s Procedure for Nonlinear Periodic Systems
,” Archive for Rational Mechanics and Analysis
, Vol. 20
, No 2
, pp. 120
–152
.9.
Ling
F. H.
Wu
X. X.
1987
, “Fast Galerkin Method and its Application to Determine Periodic Solutions of Non-Linear Oscillators
,” Int. J. Non-Linear Mechanics
, Vol. 22
, No. 2
, pp. 89
–98
.10.
Cameron
T. M.
Griffin
J. H.
1989
, “An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,” ASME Journal of Applied Mechanics
, Vol. 56
, pp. 149
–154
.11.
Cardona
A.
Coune
T.
Lerusse
A.
Geradin
M.
1994
, “A Multiharmonic Method for Non-Linear Vibration Analysis
,” International Journal for Numerical Methods in Engineering
, Vol. 37
, pp. 1593
–1608
.12.
Dowell
E. H.
1983
, “The Behavior of a Linear, Damped Modal System with a Non-Linear Spring-Mass-Dry Friction Damper System Attached
,” Journal of Sound and Vibration
, Vol. 89
, No. 1
, pp. 65
–84
.13.
Korkmaz, I., Barrau, J. J., Berthillier, M., and Cre´ze´, S., 1995, “Theoretical Dynamic Analysis of a Cantilever Beam Damped by a Dry Friction Damper,” ASME 15th Biennial Conference on Mechanical Vibration and Noise, Boston, MA, September 17–21, 1995.
14.
Korkmaz
I.
Barrau
J. J.
Berthillier
M.
Cre´ze´
S.
1993
, “Analyse Dynamique Experimentale d’une Poutre Amortie par un Amortisseur a` Frottement Sec
,” Me´canique Industrielle et Mate´riaux
, Vol. 46
, No 3
, pp. 145
–149
.15.
Berthillier, M., Dhainaut, M., Burgaud, F., and Gamier, V., 1994, “A Numerical Method for the Prediction of Bladed Disk Forced Response,” ASME International Gas Turbine and Aeroengine Congress and Exposition, The Hague, Netherlands, June 13–16; 1994, Paper No. 94-GT-293.
This content is only available via PDF.
Copyright © 1998
by The American Society of Mechanical Engineers
You do not currently have access to this content.