When the response of a structural system to dynamic excitation must be analyzed, a substructure coupling method (or component-mode synthesis method) is frequently employed to reduce the order of the finite element model of the structure. This paper reviews procedures used to formulate component modes for substructures and to assemble substructure models to form reduced-order models of the original system. A brief literature survey covering several applications of substructure coupling is also presented.

1.
Space Shuttle Payload Design and Development, Structural/Mechanical Interfaces and Requirements, 1988, Rev. C., NSTS 20052, Vol. 8, NASA-Lyndon B. Johnson Space Center.
2.
Dynamics of Flexible Multibody Systems: Theory and Experiment, 1992, S. C. Sinha, H. B. Waites, and W. J. Book, eds., AMD-Vol. 141, DSC-Vol. 37, ASME, New York, NY.
3.
Admire
J. R.
,
Tinker
M. L.
, and
Ivey
E. W.
,
1993
Mass-Additive Modal Test Method for Verification of Constrained Structural Models
,”
AIAA Journal
, Vol.
31
, No.
11
, pp.
2148
2153
.
4.
Agrawal
O. P.
, and
Shabana
A. A.
,
1985
Dynamic Analysis of Multibody Systems Using Component Modes
,”
Computers & Structures
, Vol.
21
, No.
6
, pp.
1303
1312
.
5.
Alvin, K. F., Park, K. C., and Peterson, L. D., 1993, “A Consistent Model Reduction of Measured Modal Parameters for Reduced-Order Active Control,” Paper AIAA 93-3769-CP, AIAA Guidance, Navigation, and Control Conference, Monterey, CA, pp. 644–656.
6.
Anthony, T. C., 1995, “The Characterization of Flexibility in Multibody Systems,” Ph.D. dissertation, The University of Texas at Austin, Austin, TX.
7.
Babusˇka, V., and Craig, R. R., Jr., “Substructure-Based Control of Flexible Structures,” Proceedings 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, La Jolla, CA, pp. 3415–3422.
8.
Baker
M.
,
1986
Component Mode Synthesis Methods for Test-Based, Rigidly Connected Flexible Components
,”
AIAA J. Spacecraft and Rockets
, Vol.
23
, No.
3
, pp.
316
322
.
9.
Benfield, W. A., Bodley, C. S., and Morosow, G., 1972, “Modal Synthesis Methods,” Space Shuttle Dynamics and Aeroelasticity Working Group Symposium on Substructure Testing and Synthesis, NASA-TM-X-72318, Marshall Space Flight Center, AL.
10.
Bennighof, J. K., et al., 1994, “Adaptive Multi-level Substructuring for Acoustic Radiation and Scattering from Complex Structures,” Paper No. 4pSAa3, 127th Meeting of the Acoustical Society of America, Cambridge, MA.
11.
Blelloch, P. A., and Carney, K. S., 1990, “Selection of Component Modes,” Paper No. AIAA-90-1201-CP, AIAA 31st Structures, Structural Dynamics, and Materials Conference, Long Beach, CA, pp. 105–112.
12.
Canavin
J. R.
, and
Likins
P. W.
,
1977
Floating Reference Frames for Flexible Spacecraft
,”
AIAA J. Spacecraft and Rockets
, Vol.
14
, No.
12
, pp.
724
732
.
13.
Craig
R. R.
, and
Bampton
M. C. C.
,
1968
Coupling of Substructures for Dynamic Analysis
,”
AIAA Journal
, Vol.
6
, No.
7
, pp.
1313
1319
.
14.
Craig, R. R., Jr., and Chang, C.-J., 1977, “One the Use of Attachment Modes in Substructure Coupling for Dynamic Analysis,” Paper 77-405, Proc. AIAA/ASME 18th Structures, Structural Dynamics, and Materials Conf., San Diego, CA, pp. 89–99.
15.
Craig, R. R., Jr., 1981, Structural Dynamics—An Introduction to Computer Methods, John Wiley & Sons, Inc., New York, NY.
16.
Craig
R. R.
,
1987
A Review of Time-Domain and Frequency-Domain Component Mode Synthesis Methods
,”
Int. J. Analytical and Experimental Modal Analysis
, Vol.
2
, No.
2
, pp.
59
72
.
17.
Craig
R. R.
, and
Hale
A. L.
,
1988
Block-Krylov Component Synthesis Method for Structural Model Reduction
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
11
, No.
6
, pp.
562
570
.
18.
Craig
R. R.
, and
Ni
Z.
,
1989
Component Mode Synthesis for Model Order Reduction of Nonclassically Damped Systems
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
12
, No.
4
, pp.
577
584
.
19.
Craig, R. R., Jr., 1995, “A New Procedure for Substructure System Identification,” Proceedings, AIAA 36th Structures, Structural Dynamics, and Materials Conference, New Orleans, LA.
20.
Craig, R. R., Jr., and Anthony, T. C., “On the Use of Component Modes to Characterize Flexibility in Multibody Systems,” in preparation.
21.
Farhat, C., and Geradin, M., 1992, “A Hybrid Component Mode Synthesis Method for Incompatible Substructures,” Paper AIAA-92-2383-CP, Proc. 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., Dallas, TX, pp. 1783–1796.
22.
Greif
R.
,
1986
Substructuring and Component Mode Synthesis
,”
The Shock and Vibration Digest
, Vol.
18
, No.
7
, pp.
3
8
.
23.
Ha¨ggblad
B.
, and
Eriksson
L.
,
1993
Model Reduction Methods for Dynamic Analyses of Large Structures
,”
Computers & Structures
, Vol.
47
, No.
4/5
, pp.
735
749
.
24.
Hale
A. L.
,
1984
Substructure Synthesis and its Iterative Improvement for Large Nonconservative Vibratory Systems
,”
AIAA Journal
, Vol.
22
, No.
2
, pp.
265
272
.
25.
Hasselman
T. K.
, and
Kaplan
A.
,
1974
Dynamic Analysis of Large Systems by Complex Mode Synthesis
,”
ASME Journal of Dynamic Systems, Measurement, and Control
, Vol.
96
, No.
3
, pp.
327
333
.
26.
Hintz
R. M.
,
1975
Analytical Methods in Component Modal Synthesis
,”
AIAA Journal
, Vol.
13
, No.
8
, pp.
1007
1016
.
27.
Hughes
P. C.
, and
Skelton
R. E.
,
1981
Modal Truncation for Flexible Spacecraft
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
4
, No.
3
, pp.
291
297
.
28.
Hurty
W. C.
,
1965
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA Journal
, Vol.
3
, No.
4
, pp.
678
685
.
29.
Hurty, W. C., 1967, A Criterion for Selecting Realistic Natural Modes of a Structure, Report No. NASA-CR-92509, Report No. JPL-TM-33-364, Jet Propulsion Laboratory, Pasadena, CA.
30.
Ikeda
M.
,
Sˇiljak
D. D.
, and
White
D. E.
,
1981
Decentralized Control with Overlapping Information Sets
,”
J. Optim. Theory Appl.
, Vol.
34
, No.
2
, pp.
279
309
.
31.
Kammer, D. C., and Triller, M. J., 1995, “Selection of Component Modes for Craig-Bampton Substructure Representations,” Proceedings AIAA 36th Structures, Structural Dynamics, and Materials Conference, New Orleans, LA.
32.
Kim
S.-S.
, and
Haug
E. J.
,
1990
Selection of Deformation Modes for Flexible Multibody Dynamics
,”
Mechanics of Structures and Machines
, Vol.
18
, No.
4
, pp.
565
586
.
33.
Le´ger
P.
,
1990
Application of Load-Dependent Vectors Bases for Dynamic Substructure Analysis
,”
AIAA Journal
, Vol.
28
, No.
1
, pp.
177
179
.
34.
Lee, A. Y., and Tsuha, W. S., 1992, “A Component Modes Projection and Assembly Model Reduction Methodology for Articulated, Multi-flexible Body Structures,” Paper AIAA 92-4323-CP, AiAA Guidance, Navigation, and Control Conference, Hilton Head, SC, pp. 143–149.
35.
Lee, W. L., Huggins, J. D., and Book, W. J., 1988, “Experimental Verification of a Large Flexible Manipulator,” Proc. American Control Conference, Atlanta, GA, pp. 1021–1028.
36.
Likins
P. W.
,
1976
Appendage Modal Coordinate Truncation Criteria in Hybrid Coordinate Dynamic Analysis
,”
AIAA J. Spacecraft and Rockets
, Vol.
13
, No.
10
, pp.
611
617
.
37.
Meirovitch, L., 1980, Computational Methods, in Structural Dynamics, Sijthoff & Noordhoff, Rockville, MD.
38.
Meirovitch, L., 1986, Elements of Vibration Analysis, 2nd Ed., McGraw-Hill Book Company, New York, NY.
39.
Meirovitch
L.
, and
Kwak
M. K.
,
1990
Convergence of the Classical Rayleigh-Ritz Method and the Finite Element Method
,”
AIAA Journal
, Vol.
28
, No.
8
, pp.
1509
1516
.
40.
Meirovitch
L.
, and
Kwak
M. K.
,
1991
Rayleigh-Ritz Based Substructure Synthesis for Flexible Multibody Systems
,”
AIAA Journal
, Vol.
29
, No.
10
, pp.
1709
1719
.
41.
Milne
R. D.
,
1968
Some Remarks on the Dynamics of Deformable Bodies
,”
AIAA Journal
, Vol.
6
, No.
3
, pp.
556
558
.
42.
Mu¨hlbauer, K., Troidl, H., and Dillinger, S., 1992, “Design, Modeling, and Verification of a Modal Survey Test Fixture for Space Shuttle Payloads,” Proc. 10th International Modal Analysis Conference, San Diego, CA, pp. 1005–1009.
43.
Noor
A. K.
, and
Peters
J. M.
,
1980
Reduced Basis Technique for Nonlinear Analysis of Structures
,”
AIAA Journal
, Vol.
18
, No.
4
, pp.
455
462
.
44.
Noor
A. K.
,
1994
Recent Advances and Applications of Reduction Methods
,”
Applied Mechanics Reviews
, Vol.
47
, No.
5
, pp.
125
146
.
45.
Patel, A. B., and Kang, D. S., 1993, “Component Mode Selection Criteria for Model Reduction of Large Flexible Structures,” 9th VPI & SU Symposium on Dynamics and Control of Large Structures, Blacksburg, VA, pp. 75–86.
46.
Shabana, A. A., 1989, Dynamics of Multibody Systems, John Wiley & Sons, Inc., New York, NY.
47.
Sˇiljak, D. D., 1991, Decentralized Control of Complex Systems, Academic Press, Inc., Boston, MA.
48.
Spanos, J. T., and Mingori, D. L., 1990, “Multibody Model Reduction by Component Mode Synthesis and Component Cost Analysis,” Paper AIAA 90-1037-CO, AIAA Aerospace Sciences Meeting, Reno, NV, pp. 1914–1919.
49.
Spanos
J. T.
, and
Tsuha
W. S.
,
1991
Selection of Component Modes for Flexible Multibody Simulation
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
14
, No.
2
, pp.
278
286
.
50.
Su, T.-J., and Craig, R. R., Jr., 1990, “Substructuring Decomposition and Controller Synthesis,” Proc. 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long Beach, CA, pp. 1932–1940.
51.
Su, T.-J., and Craig, R. R., Jr., 1992 “Krylov Vector Methods for Model Reduction and Control of Flexible Structures,” Control and Dynamic Systems, Vol. 54, Academic Press, Inc., San Diego, CA, pp. 449–481.
52.
Su
T.-J.
, and
Juang
J.-N.
,
1994
Decentralized Control of Large Flexible Structures by Joint Decoupling
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
17
, No.
4
, pp.
676
685
.
53.
Sunar
M.
, and
Rao
S. S.
,
1992
Substructure Decomposition Method for the Control Design of Large Flexible Structures
,”
AIAA Journal
, Vol.
30
, No.
10
, pp.
2573
2575
.
54.
Tobbe, P. A., Howsman, T. G., and Schonberg, W. P., 1993, “A Comparison of Ritz Vectors for Use in Flexible Multibody Simulations,” 9th VPI & SU Symposium on Dynamics and Control of Large Structures, Blacksburg, VA, pp. 49–62.
55.
Wilson
E. L.
, and
Bayo
E. P.
,
1986
Use of Special Ritz Vectors in Dynamic Substructure Analysis
,”
ASCE J. Structural Engineering
, Vol.
112
, No.
8
, pp.
1944
1954
.
56.
Wu
H. T.
, and
Mani
N. K.
,
1994
Modeling of Flexible Bodies for Multibody Dynamic Systems Using Ritz Vectors
,”
ASME Journal of Mechanical Design
, Vol.
116
, No.
2
, pp.
437
444
.
57.
Wu
L.
, and
Greif
R.
,
1983
Substructuring and Modal Synthesis for Damped Structures
,”
J. Sound and Vibration
, Vol.
90
, No.
3
, pp.
407
422
.
58.
Yeh
H.-F.
, and
Dopker
B.
,
1990
Deformation Mode Selection and Mode Orthonormalization for Flexible Body System Dynamics
,”
Computers & Structures
, Vol.
34
, No.
4
, pp.
615
627
.
59.
Young
K. D.
,
1990
Distributed Finite-Element Modeling and Control Approach for Large Flexible Structures
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
13
, No.
4
, pp.
703
713
.
60.
Yousuff, A., 1988, “Application of Inclusion Principle to Mechanical Systems,” Proc. American Control Conference, Atlanta, GA, pp. 1516–1520.
This content is only available via PDF.
You do not currently have access to this content.