When the response of a structural system to dynamic excitation must be analyzed, a substructure coupling method (or component-mode synthesis method) is frequently employed to reduce the order of the finite element model of the structure. This paper reviews procedures used to formulate component modes for substructures and to assemble substructure models to form reduced-order models of the original system. A brief literature survey covering several applications of substructure coupling is also presented.
Issue Section:
Research Papers
1.
Space Shuttle Payload Design and Development, Structural/Mechanical Interfaces and Requirements, 1988, Rev. C., NSTS 20052, Vol. 8, NASA-Lyndon B. Johnson Space Center.
2.
Dynamics of Flexible Multibody Systems: Theory and Experiment, 1992, S. C. Sinha, H. B. Waites, and W. J. Book, eds., AMD-Vol. 141, DSC-Vol. 37, ASME, New York, NY.
3.
Admire
J. R.
Tinker
M. L.
Ivey
E. W.
1993
“Mass-Additive Modal Test Method for Verification of Constrained Structural Models
,” AIAA Journal
, Vol. 31
, No. 11
, pp. 2148
–2153
.4.
Agrawal
O. P.
Shabana
A. A.
1985
“Dynamic Analysis of Multibody Systems Using Component Modes
,” Computers & Structures
, Vol. 21
, No. 6
, pp. 1303
–1312
.5.
Alvin, K. F., Park, K. C., and Peterson, L. D., 1993, “A Consistent Model Reduction of Measured Modal Parameters for Reduced-Order Active Control,” Paper AIAA 93-3769-CP, AIAA Guidance, Navigation, and Control Conference, Monterey, CA, pp. 644–656.
6.
Anthony, T. C., 1995, “The Characterization of Flexibility in Multibody Systems,” Ph.D. dissertation, The University of Texas at Austin, Austin, TX.
7.
Babusˇka, V., and Craig, R. R., Jr., “Substructure-Based Control of Flexible Structures,” Proceedings 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, La Jolla, CA, pp. 3415–3422.
8.
Baker
M.
1986
“Component Mode Synthesis Methods for Test-Based, Rigidly Connected Flexible Components
,” AIAA J. Spacecraft and Rockets
, Vol. 23
, No. 3
, pp. 316
–322
.9.
Benfield, W. A., Bodley, C. S., and Morosow, G., 1972, “Modal Synthesis Methods,” Space Shuttle Dynamics and Aeroelasticity Working Group Symposium on Substructure Testing and Synthesis, NASA-TM-X-72318, Marshall Space Flight Center, AL.
10.
Bennighof, J. K., et al., 1994, “Adaptive Multi-level Substructuring for Acoustic Radiation and Scattering from Complex Structures,” Paper No. 4pSAa3, 127th Meeting of the Acoustical Society of America, Cambridge, MA.
11.
Blelloch, P. A., and Carney, K. S., 1990, “Selection of Component Modes,” Paper No. AIAA-90-1201-CP, AIAA 31st Structures, Structural Dynamics, and Materials Conference, Long Beach, CA, pp. 105–112.
12.
Canavin
J. R.
Likins
P. W.
1977
“Floating Reference Frames for Flexible Spacecraft
,” AIAA J. Spacecraft and Rockets
, Vol. 14
, No. 12
, pp. 724
–732
.13.
Craig
R. R.
Bampton
M. C. C.
1968
“Coupling of Substructures for Dynamic Analysis
,” AIAA Journal
, Vol. 6
, No. 7
, pp. 1313
–1319
.14.
Craig, R. R., Jr., and Chang, C.-J., 1977, “One the Use of Attachment Modes in Substructure Coupling for Dynamic Analysis,” Paper 77-405, Proc. AIAA/ASME 18th Structures, Structural Dynamics, and Materials Conf., San Diego, CA, pp. 89–99.
15.
Craig, R. R., Jr., 1981, Structural Dynamics—An Introduction to Computer Methods, John Wiley & Sons, Inc., New York, NY.
16.
Craig
R. R.
1987
“A Review of Time-Domain and Frequency-Domain Component Mode Synthesis Methods
,” Int. J. Analytical and Experimental Modal Analysis
, Vol. 2
, No. 2
, pp. 59
–72
.17.
Craig
R. R.
Hale
A. L.
1988
“Block-Krylov Component Synthesis Method for Structural Model Reduction
,” AIAA J. Guidance, Control, and Dynamics
, Vol. 11
, No. 6
, pp. 562
–570
.18.
Craig
R. R.
Ni
Z.
1989
“Component Mode Synthesis for Model Order Reduction of Nonclassically Damped Systems
,” AIAA J. Guidance, Control, and Dynamics
, Vol. 12
, No. 4
, pp. 577
–584
.19.
Craig, R. R., Jr., 1995, “A New Procedure for Substructure System Identification,” Proceedings, AIAA 36th Structures, Structural Dynamics, and Materials Conference, New Orleans, LA.
20.
Craig, R. R., Jr., and Anthony, T. C., “On the Use of Component Modes to Characterize Flexibility in Multibody Systems,” in preparation.
21.
Farhat, C., and Geradin, M., 1992, “A Hybrid Component Mode Synthesis Method for Incompatible Substructures,” Paper AIAA-92-2383-CP, Proc. 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., Dallas, TX, pp. 1783–1796.
22.
Greif
R.
1986
“Substructuring and Component Mode Synthesis
,” The Shock and Vibration Digest
, Vol. 18
, No. 7
, pp. 3
–8
.23.
Ha¨ggblad
B.
Eriksson
L.
1993
“Model Reduction Methods for Dynamic Analyses of Large Structures
,” Computers & Structures
, Vol. 47
, No. 4/5
, pp. 735
–749
.24.
Hale
A. L.
1984
“Substructure Synthesis and its Iterative Improvement for Large Nonconservative Vibratory Systems
,” AIAA Journal
, Vol. 22
, No. 2
, pp. 265
–272
.25.
Hasselman
T. K.
Kaplan
A.
1974
“Dynamic Analysis of Large Systems by Complex Mode Synthesis
,” ASME Journal of Dynamic Systems, Measurement, and Control
, Vol. 96
, No. 3
, pp. 327
–333
.26.
Hintz
R. M.
1975
“Analytical Methods in Component Modal Synthesis
,” AIAA Journal
, Vol. 13
, No. 8
, pp. 1007
–1016
.27.
Hughes
P. C.
Skelton
R. E.
1981
“Modal Truncation for Flexible Spacecraft
,” AIAA J. Guidance, Control, and Dynamics
, Vol. 4
, No. 3
, pp. 291
–297
.28.
Hurty
W. C.
1965
“Dynamic Analysis of Structural Systems Using Component Modes
,” AIAA Journal
, Vol. 3
, No. 4
, pp. 678
–685
.29.
Hurty, W. C., 1967, A Criterion for Selecting Realistic Natural Modes of a Structure, Report No. NASA-CR-92509, Report No. JPL-TM-33-364, Jet Propulsion Laboratory, Pasadena, CA.
30.
Ikeda
M.
Sˇiljak
D. D.
White
D. E.
1981
“Decentralized Control with Overlapping Information Sets
,” J. Optim. Theory Appl.
, Vol. 34
, No. 2
, pp. 279
–309
.31.
Kammer, D. C., and Triller, M. J., 1995, “Selection of Component Modes for Craig-Bampton Substructure Representations,” Proceedings AIAA 36th Structures, Structural Dynamics, and Materials Conference, New Orleans, LA.
32.
Kim
S.-S.
Haug
E. J.
1990
“Selection of Deformation Modes for Flexible Multibody Dynamics
,” Mechanics of Structures and Machines
, Vol. 18
, No. 4
, pp. 565
–586
.33.
Le´ger
P.
1990
“Application of Load-Dependent Vectors Bases for Dynamic Substructure Analysis
,” AIAA Journal
, Vol. 28
, No. 1
, pp. 177
–179
.34.
Lee, A. Y., and Tsuha, W. S., 1992, “A Component Modes Projection and Assembly Model Reduction Methodology for Articulated, Multi-flexible Body Structures,” Paper AIAA 92-4323-CP, AiAA Guidance, Navigation, and Control Conference, Hilton Head, SC, pp. 143–149.
35.
Lee, W. L., Huggins, J. D., and Book, W. J., 1988, “Experimental Verification of a Large Flexible Manipulator,” Proc. American Control Conference, Atlanta, GA, pp. 1021–1028.
36.
Likins
P. W.
1976
“Appendage Modal Coordinate Truncation Criteria in Hybrid Coordinate Dynamic Analysis
,” AIAA J. Spacecraft and Rockets
, Vol. 13
, No. 10
, pp. 611
–617
.37.
Meirovitch, L., 1980, Computational Methods, in Structural Dynamics, Sijthoff & Noordhoff, Rockville, MD.
38.
Meirovitch, L., 1986, Elements of Vibration Analysis, 2nd Ed., McGraw-Hill Book Company, New York, NY.
39.
Meirovitch
L.
Kwak
M. K.
1990
“Convergence of the Classical Rayleigh-Ritz Method and the Finite Element Method
,” AIAA Journal
, Vol. 28
, No. 8
, pp. 1509
–1516
.40.
Meirovitch
L.
Kwak
M. K.
1991
“Rayleigh-Ritz Based Substructure Synthesis for Flexible Multibody Systems
,” AIAA Journal
, Vol. 29
, No. 10
, pp. 1709
–1719
.41.
Milne
R. D.
1968
“Some Remarks on the Dynamics of Deformable Bodies
,” AIAA Journal
, Vol. 6
, No. 3
, pp. 556
–558
.42.
Mu¨hlbauer, K., Troidl, H., and Dillinger, S., 1992, “Design, Modeling, and Verification of a Modal Survey Test Fixture for Space Shuttle Payloads,” Proc. 10th International Modal Analysis Conference, San Diego, CA, pp. 1005–1009.
43.
Noor
A. K.
Peters
J. M.
1980
“Reduced Basis Technique for Nonlinear Analysis of Structures
,” AIAA Journal
, Vol. 18
, No. 4
, pp. 455
–462
.44.
Noor
A. K.
1994
“Recent Advances and Applications of Reduction Methods
,” Applied Mechanics Reviews
, Vol. 47
, No. 5
, pp. 125
–146
.45.
Patel, A. B., and Kang, D. S., 1993, “Component Mode Selection Criteria for Model Reduction of Large Flexible Structures,” 9th VPI & SU Symposium on Dynamics and Control of Large Structures, Blacksburg, VA, pp. 75–86.
46.
Shabana, A. A., 1989, Dynamics of Multibody Systems, John Wiley & Sons, Inc., New York, NY.
47.
Sˇiljak, D. D., 1991, Decentralized Control of Complex Systems, Academic Press, Inc., Boston, MA.
48.
Spanos, J. T., and Mingori, D. L., 1990, “Multibody Model Reduction by Component Mode Synthesis and Component Cost Analysis,” Paper AIAA 90-1037-CO, AIAA Aerospace Sciences Meeting, Reno, NV, pp. 1914–1919.
49.
Spanos
J. T.
Tsuha
W. S.
1991
“Selection of Component Modes for Flexible Multibody Simulation
,” AIAA J. Guidance, Control, and Dynamics
, Vol. 14
, No. 2
, pp. 278
–286
.50.
Su, T.-J., and Craig, R. R., Jr., 1990, “Substructuring Decomposition and Controller Synthesis,” Proc. 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long Beach, CA, pp. 1932–1940.
51.
Su, T.-J., and Craig, R. R., Jr., 1992 “Krylov Vector Methods for Model Reduction and Control of Flexible Structures,” Control and Dynamic Systems, Vol. 54, Academic Press, Inc., San Diego, CA, pp. 449–481.
52.
Su
T.-J.
Juang
J.-N.
1994
“Decentralized Control of Large Flexible Structures by Joint Decoupling
,” AIAA J. Guidance, Control, and Dynamics
, Vol. 17
, No. 4
, pp. 676
–685
.53.
Sunar
M.
Rao
S. S.
1992
“Substructure Decomposition Method for the Control Design of Large Flexible Structures
,” AIAA Journal
, Vol. 30
, No. 10
, pp. 2573
–2575
.54.
Tobbe, P. A., Howsman, T. G., and Schonberg, W. P., 1993, “A Comparison of Ritz Vectors for Use in Flexible Multibody Simulations,” 9th VPI & SU Symposium on Dynamics and Control of Large Structures, Blacksburg, VA, pp. 49–62.
55.
Wilson
E. L.
Bayo
E. P.
1986
“Use of Special Ritz Vectors in Dynamic Substructure Analysis
,” ASCE J. Structural Engineering
, Vol. 112
, No. 8
, pp. 1944
–1954
.56.
Wu
H. T.
Mani
N. K.
1994
“Modeling of Flexible Bodies for Multibody Dynamic Systems Using Ritz Vectors
,” ASME Journal of Mechanical Design
, Vol. 116
, No. 2
, pp. 437
–444
.57.
Wu
L.
Greif
R.
1983
“Substructuring and Modal Synthesis for Damped Structures
,” J. Sound and Vibration
, Vol. 90
, No. 3
, pp. 407
–422
.58.
Yeh
H.-F.
Dopker
B.
1990
“Deformation Mode Selection and Mode Orthonormalization for Flexible Body System Dynamics
,” Computers & Structures
, Vol. 34
, No. 4
, pp. 615
–627
.59.
Young
K. D.
1990
“Distributed Finite-Element Modeling and Control Approach for Large Flexible Structures
,” AIAA J. Guidance, Control, and Dynamics
, Vol. 13
, No. 4
, pp. 703
–713
.60.
Yousuff, A., 1988, “Application of Inclusion Principle to Mechanical Systems,” Proc. American Control Conference, Atlanta, GA, pp. 1516–1520.
This content is only available via PDF.
Copyright © 1995
by The American Society of Mechanical Engineers
You do not currently have access to this content.