Read/write head suspensions are critical components of high-performance floppy disk drives. Their dynamics affect head/media compliance, wear, and tracking performance. Vibration measurements are necessary in order to verify and adjust finite element models, to observe the influence of actual loading and operating conditions, and to study the effects of unmodeled components such as electrical wires and adhesives. A nonintrusive measurement technique using a Laser Doppler Vibrometer is utilized to measure the submicron vibrations. Excitation of the suspension is provided by a specially designed miniature air hammer and a piezoelectric transducer. Natural frequencies and mode shapes are extracted from the measurements and compared with numerical data from the finite element model. Research shows that boundary conditions are the most important parameters in the modeling of the suspension. A new design is proposed, using the verified model, to increase the tracking performance of the suspension. Synergy between experimentation and numerical analysis is emphasized.

This content is only available via PDF.
You do not currently have access to this content.