Skip Nav Destination
Issues
July 1990
ISSN 0889-504X
EISSN 1528-8900
In this Issue
Research Papers
Numerical Simulation of the Two-Dimensional Viscous Compressible Flow in Blade Cascades Using a Solution-Adaptive Unstructured Mesh
J. Turbomach. July 1990, 112(3): 311–319.
doi: https://doi.org/10.1115/1.2927660
Throughflow Theory for Nonaxisymmetric Turbomachinery Flow: Part I—Formulation
J. Turbomach. July 1990, 112(3): 320–326.
doi: https://doi.org/10.1115/1.2927661
Topics:
Flow (Dynamics)
,
Turbomachinery
,
Pressure
,
Airfoils
,
Databases
,
Errors
,
Rotors
,
Stators
Throughflow Theory for Nonaxisymmetric Turbomachinery Flow: Part II—Assessment
J. Turbomach. July 1990, 112(3): 328–337.
doi: https://doi.org/10.1115/1.2927664
Topics:
Flow (Dynamics)
,
Turbomachinery
,
Pressure
,
Airfoils
,
Databases
,
Errors
,
Rotors
,
Stators
A Parametric Study of Radial Turbomachinery Blade Design in Three-Dimensional Subsonic Flow
J. Turbomach. July 1990, 112(3): 338–345.
doi: https://doi.org/10.1115/1.2927665
Topics:
Blades
,
Design
,
Subsonic flow
,
Turbomachinery
,
Pressure
,
Shapes
,
Design methodology
,
Flow (Dynamics)
,
Impellers
A Three-Dimensional Inverse Method for Turbomachinery: Part I—Theory
J. Turbomach. July 1990, 112(3): 346–354.
doi: https://doi.org/10.1115/1.2927666
Topics:
Turbomachinery
,
Blades
,
Design
,
Flow (Dynamics)
,
Impellers
,
Inflow
,
Machinery
,
Turbines
,
Vorticity
A Three-Dimensional Inverse Method for Turbomachinery: Part II—Experimental Verification
J. Turbomach. July 1990, 112(3): 355–361.
doi: https://doi.org/10.1115/1.2927667
Topics:
Turbomachinery
,
Impellers
,
Rotors
,
Design
,
Flow (Dynamics)
,
Exhaust systems
,
Inflow
,
Turbines
,
Wheels
Analysis of Three-Dimensional Turbomachinery Flows on C-Type Grids Using an Implicit Euler Solver
J. Turbomach. July 1990, 112(3): 362–369.
doi: https://doi.org/10.1115/1.2927668
Topics:
Flow (Dynamics)
,
Turbomachinery
,
Algorithms
,
Cascades (Fluid dynamics)
,
Compressors
,
Construction
,
Inflow
,
NASA
,
Outflow
,
Rotors
Simulation of Three-Dimensional Viscous Flow Within a Multistage Turbine
J. Turbomach. July 1990, 112(3): 370–376.
doi: https://doi.org/10.1115/1.2927669
Topics:
Simulation
,
Turbines
,
Viscous flow
,
Flow (Dynamics)
,
Blades
,
Compressibility
,
Modeling
,
Rotors
,
Turbomachinery
,
Viscosity
Multi-Airfoil Navier–Stokes Simulations of Turbine Rotor–Stator Interaction
J. Turbomach. July 1990, 112(3): 377–384.
doi: https://doi.org/10.1115/1.2927670
Topics:
Airfoils
,
Engineering simulation
,
Rotors
,
Simulation
,
Stators
,
Turbines
,
Turbomachinery
,
Algorithms
,
Dimensions
,
Flow (Dynamics)
The Extension and Application of Three-Dimensional Time-Marching Analyses to Incompressible Turbomachinery Flows
J. Turbomach. July 1990, 112(3): 385–390.
doi: https://doi.org/10.1115/1.2927671
Topics:
Flow (Dynamics)
,
Turbomachinery
,
Errors
,
Mach number
,
Acoustics
,
Compressibility
,
Compressible flow
,
Geometry
,
Inflow
,
Inviscid flow
Three-Dimensional Solutions for Inviscid Incompressible Flow in Turbomachines
J. Turbomach. July 1990, 112(3): 391–398.
doi: https://doi.org/10.1115/1.2927672
Topics:
Flow (Dynamics)
,
Turbomachinery
,
Pressure
,
Momentum
,
Poisson equation
,
Rotors
,
Blades
,
Boundary-value problems
,
Finite difference methods
Axial Flow Compressor Design Optimization: Part I—Pitchline Analysis and Multivariable Objective Function Influence
J. Turbomach. July 1990, 112(3): 399–404.
doi: https://doi.org/10.1115/1.2927673
Topics:
Axial flow
,
Design
,
Optimization
,
Weight (Mass)
,
Compressors
,
Computer programming
,
Degrees of freedom
Axial Flow Compressor Design Optimization: Part II—Throughflow Analysis
J. Turbomach. July 1990, 112(3): 405–410.
doi: https://doi.org/10.1115/1.2927674
Topics:
Axial flow
,
Design
,
Optimization
,
Compressors
,
Geometry
,
Polynomials
,
Stability
Unsteady Lifting Surface Theory for a Rotating Cascade of Swept Blades
J. Turbomach. July 1990, 112(3): 411–417.
doi: https://doi.org/10.1115/1.2927675
Surface Injection Effect on Mass Transfer From a Cylinder in Crossflow: A Simulation of Film Cooling in the Leading Edge Region of a Turbine Blade
J. Turbomach. July 1990, 112(3): 418–427.
doi: https://doi.org/10.1115/1.2927676
Topics:
Cylinders
,
Film cooling
,
Mass transfer
,
Simulation
,
Turbine blades
,
Heat
,
Circular cylinders
Effects of an Embedded Vortex on Injectant From a Single Film-Cooling Hole in a Turbulent Boundary Layer
J. Turbomach. July 1990, 112(3): 428–436.
doi: https://doi.org/10.1115/1.2927677
Topics:
Boundary layer turbulence
,
Film cooling
,
Vortices
,
Heat transfer
,
Coolants
,
Flow (Dynamics)
Effects of Density Ratio on the Hydrodynamics of Film Cooling
J. Turbomach. July 1990, 112(3): 437–443.
doi: https://doi.org/10.1115/1.2927678
Topics:
Density
,
Film cooling
,
Hydrodynamics
,
Flow (Dynamics)
,
Boundary layer turbulence
,
Jets
,
Lasers
,
Relaxation (Physics)
,
Shear stress
,
Turbulence
The Effect of Density Ratio on the Heat Transfer Coefficient From a Film-Cooled Flat Plate
J. Turbomach. July 1990, 112(3): 444–450.
doi: https://doi.org/10.1115/1.2927679
Topics:
Density
,
Flat plates
,
Heat transfer coefficients
,
Boundary layer turbulence
,
Coolants
,
Cooling
,
Fluids
,
Gas turbines
,
Gases
,
Heat
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
J. Turbomach. July 1990, 112(3): 451–458.
doi: https://doi.org/10.1115/1.2927680
Topics:
Airfoils
,
Coolants
,
Heat transfer
,
Impingement cooling
,
Turbines
,
Coatings
,
Nozzles
,
Reynolds number
,
Transients (Dynamics)
,
Computers
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part II—Impingement Cooling With Film Coolant Extraction
J. Turbomach. July 1990, 112(3): 459–466.
doi: https://doi.org/10.1115/1.2927681
Topics:
Airfoils
,
Coolants
,
Heat transfer
,
Impingement cooling
,
Turbines
,
Flow (Dynamics)
,
Blades
,
Film cooling
,
Coatings
,
Nozzles
Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient
J. Turbomach. July 1990, 112(3): 467–476.
doi: https://doi.org/10.1115/1.2927682
Topics:
Cooling
,
Heat transfer coefficients
,
Pressure
,
Aerodynamics
,
Computational fluid dynamics
,
Computers
,
Convection
,
Heat transfer
An Experimental Study of Turbine Vane Heat Transfer With Leading Edge and Downstream Film Cooling
J. Turbomach. July 1990, 112(3): 477–487.
doi: https://doi.org/10.1115/1.2927683
Topics:
Film cooling
,
Heat transfer
,
Turbines
,
Airfoils
,
Coolants
,
Temperature
,
Mach number
,
Pressure
,
Reynolds number
,
Turbulence
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
J. Turbomach. July 1990, 112(3): 488–496.
doi: https://doi.org/10.1115/1.2927684
Topics:
Film cooling
,
Heat transfer
,
Nozzles
,
Turbines
,
Flow (Dynamics)
,
Pressure
,
Suction
,
Airfoils
,
Cascades (Fluid dynamics)
,
Flow visualization
An Experimental Convective Heat Transfer Investigation Around a Film-Cooled Gas Turbine Blade
J. Turbomach. July 1990, 112(3): 497–503.
doi: https://doi.org/10.1115/1.2927685
Topics:
Blades
,
Convection
,
Gas turbines
,
Coolants
,
Cascades (Fluid dynamics)
,
Ceramics
,
Compression
,
Flow (Dynamics)
,
Gages
,
Glass
Prediction of Heat Transfer Characteristics for Discrete Hole Film Cooling for Turbine Blade Applications
J. Turbomach. July 1990, 112(3): 504–511.
doi: https://doi.org/10.1115/1.2927686
Behavior of a Coolant Film With Two Rows of Holes Along the Pressure Side of a High-Pressure Nozzle Guide Vane
J. Turbomach. July 1990, 112(3): 512–520.
doi: https://doi.org/10.1115/1.2927687
Topics:
Coolants
,
High pressure (Physics)
,
Nozzle guide vanes
,
Pressure
,
Compression
,
Convection
,
Film cooling
,
Heat transfer coefficients
,
Internal flow
,
Mach number
Effects of Wake Passing on Stagnation Region Heat Transfer
J. Turbomach. July 1990, 112(3): 522–530.
doi: https://doi.org/10.1115/1.2927690
Topics:
Heat transfer
,
Wakes
,
Cylinders
,
Gages
,
Heat flux
,
Heat transfer coefficients
,
Thin films
,
Boundary layers
,
Flow (Dynamics)
,
Generators
Phase and Time-Resolved Measurements of Unsteady Heat Transfer and Pressure in a Full-Stage Rotating Turbine
J. Turbomach. July 1990, 112(3): 531–538.
doi: https://doi.org/10.1115/1.2927691
Topics:
Heat transfer
,
Pressure
,
Turbines
,
Blades
,
Heat flux
,
Design
,
Flow (Dynamics)
,
Gages
,
Platinum
,
Rotors
Aerodynamics of Cooling Jets Introduced in the Secondary Flow of a Low-Speed Turbine Cascade
J. Turbomach. July 1990, 112(3): 539–546.
doi: https://doi.org/10.1115/1.2927692
Topics:
Aerodynamics
,
Cascades (Fluid dynamics)
,
Cooling
,
Flow (Dynamics)
,
Jets
,
Turbines
,
Blades
,
Nozzles
,
Pressure
,
Probes
Experimental Determination of Stator Endwall Heat Transfer
J. Turbomach. July 1990, 112(3): 547–558.
doi: https://doi.org/10.1115/1.2927693
Characteristics of Partial Length Circular Pin Fins As Heat Transfer Augmentors for Airfoil Internal Cooling Passages
J. Turbomach. July 1990, 112(3): 559–565.
doi: https://doi.org/10.1115/1.2927694
Topics:
Airfoils
,
Cooling
,
Fins
,
Heat transfer
,
Pins (Engineering)
,
Friction
,
Heat
,
Stress
,
Turbines
Discussions
Closure to “Discussion of ‘Throughflow Theory for Nonaxisymmetric Turbomachinery Flow: Part I—Formulation’” (1990, ASME J. Turbomach., 112, p. 326)
J. Turbomach. July 1990, 112(3): 327.
doi: https://doi.org/10.1115/1.2927663
Topics:
Flow (Dynamics)
,
Turbomachinery
Discussion: “Behavior of a Coolant Film With Two Rows of Holes Along the Pressure Side of a High-Pressure Nozzle Guide Vane” (Arts, T., and Bourguignon, A. E., 1990, ASME J. Turbomach., 112, pp. 512–520)
J. Turbomach. July 1990, 112(3): 520–521.
doi: https://doi.org/10.1115/1.2927688
Topics:
Coolants
,
High pressure (Physics)
,
Nozzle guide vanes
,
Pressure
Closure to “Discussion of ‘Behavior of a Coolant Film With Two Rows of Holes Along the Pressure Side of a High-Pressure Nozzle Guide Vane’” (1990, ASME J. Turbomach., 112, pp. 520–521)
J. Turbomach. July 1990, 112(3): 521.
doi: https://doi.org/10.1115/1.2927689
Topics:
Coolants
,
High pressure (Physics)
,
Nozzles
,
Pressure