Abstract

In this study, to improve overall cooling performance for the endwall of a turbine nozzle guide vane that incorporated internal jet impingement and external purge flow and discrete injection cooling, the external film cooling was re-designed based on the knowledge of film coverage patterns from a baseline design, allowing film injection to overcome the crossflow and to cover more areas of the endwall with a given amount of coolant. Experimental conjugate heat transfer validation of the newly designed cooling geometry was conducted in a linear vane cascade by measuring overall cooling effectiveness over the endwall through an infrared (IR) thermography technique and detecting aero-thermal fields at the cascade exit with five-hole and thermocouple probes. For a given total coolant flowrate, the influence of coolant split among different cooling sources was examined. Additionally, parallel computational simulations were undertaken to elaborate the results observed in the experiments by offering in-passage flow physics. Comparisons with the baseline design proved that the newly designed cooling scheme improved the endwall overall cooling performance in terms of both effectiveness levels and coverage. In addition to optimizing the cooling geometry, more efficient usage of the coolant was found to be linked with the proper coolant split, which helped the re-designed cooling geometry to achieve an improvement of cooling effectiveness by approximately 20%. The computational simulations produced satisfactory overall cooling effectiveness, but failed to capture mixing of coolant with mainstream flow. The coolant with mainstream flow interactions visualized by the simulations provided evidence that the coolant jets from the optimized cooling scheme increased mixing flow loss but those from the pressure side suppressed the inherent vortex flow, resulting in no aerodynamic penalty as compared with the baseline cooling design.

References

1.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
(
4
), pp.
866
874
.
2.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
3.
Burigana
,
M.
,
Verstraete
,
T.
, and
Lavagnoli
,
S.
,
2023
, “
Turbine Endwall Contouring Through Advanced Optimization Techniques
,”
ASME J. Turbomach.
,
145
(
8
), p.
081011
.
4.
Shahpar
,
S.
,
Caloni
,
S.
, and
de Prieëlle
,
L.
,
2017
, “
Automatic Design Optimization of Profiled Endwalls Including Real Geometrical Effects to Minimize Turbine Secondary Flows
,”
ASME J. Turbomach.
,
139
(
7
), p.
071010
.
5.
Panchal
,
K. V.
,
Abraham
,
S.
,
Roy
,
A.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
,
2017
, “
Effect of Endwall Contouring on a Transonic Turbine Blade Passage: Heat Transfer Performance
,”
ASME J. Turbomach.
,
139
(
1
), p.
011009
.
6.
Liu
,
Z. S.
,
Yang
,
X.
,
Gao
,
C.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2018
, “
Aero-thermal Coupled Design Optimization of the Non-axisymmetric Endwall for a Gas Turbine Blade
,”
ASME Turbo Expo
, Paper No. GT2018-76594.
7.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
.
8.
Wright
,
L. M.
,
Malak
,
M. F.
,
Crites
,
D. C.
, and
Morris
,
M. C.
,
2014
, “
Review of Platform Cooling Technology for High Pressure Turbine Blades
,”
ASME Turbo Expo
, Paper No. GT2014-26373.
9.
Barigozzi
,
G.
,
Abdeh
,
H.
,
Rouina
,
S.
, and
Franchina
,
N.
,
2022
, “
The Aero-thermal Performance of Purge Flow and Discrete Holes Film Cooling of Rotor Blade Platform in Modern High Pressure Gas Turbines: A Review
,”
Int. J. Turbomach. Propuls. Power
,
7
(
3
), p.
22
.
10.
Yang
,
X.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2021
, “
Film Cooling Patterns Over an Aircraft Engine Turbine Endwall With Slot Leakage and Discrete Hole Injection
,”
Int. J. Heat Mass Transfer
,
165
, p.
120565
.
11.
Wright
,
L. M.
,
Gao
,
Z. H.
,
Yang
,
H. T.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071702
.
12.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
52
.
13.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Bleed Injection on Nozzle Guide Vane Performance: Part I—Flow Field Measurements
,”
ASME Turbo Expo
, Paper No. 2000-GT-0199.
14.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp.
786
793
.
15.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
16.
Davidson
,
F. T.
,
KistenMacher
,
D. A.
, and
Bogard
,
D. G.
,
2014
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches
,”
ASME J. Turbomach.
,
136
(
4
), p.
041007
.
17.
Yang
,
X.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2015
, “
Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071701
.
18.
Barigozzi
,
G.
,
Perdichizzi
,
A.
,
Abba
,
L.
, and
Pestelli
,
L.
,
2020
, “
Platform Film Cooling Investigation on an HP Nozzle Vane Cascade With Discrete Shaped Holes and Slot Film Cooling
,”
ASME Turbo Expo
, Paper No. GT2020-14629.
19.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
(
3
), pp.
488
496
.
20.
Jabbari
,
M. Y.
,
Marston
,
K. C.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1996
, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomach.
,
118
(
2
), pp.
278
284
.
21.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1999
, “
The Design of an Improved Endwall Film Cooling Configuration
,”
ASME J. Turbomach.
,
121
(
4
), pp.
772
780
.
22.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.
23.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J. C.
,
Xu
,
H. Z.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angle
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
.
24.
Yang
,
X.
,
Zhao
,
Q.
,
Wu
,
H.
, and
Feng
,
Z. P.
,
2022
, “
Investigations on Cooling Hole Patterns Over a Turbine Endwall for Improving Cooling Effectiveness
,”
ASME Turbo Expo
, Paper No. GT2022-82799.
25.
Mensch
,
A.
, and
Thole
,
K. A.
,
2014
, “
Overall Effectiveness of a Blade Endwall With Jet Impingement and Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031901
.
26.
Mensch
,
A.
, and
Thole
,
K. A.
,
2016
, “
Overall Effectiveness and Flowfield Measurements for an Endwall With Nonaxisymmetric Contouring
,”
ASME Turbomach.
,
138
(
3
), p.
031007
.
27.
Li
,
X. Y.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2017
, “
Experimental Investigation of Endwall Heat Transfer With Film and Impingement Cooling
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
101901
.
28.
Yang
,
X.
,
Liu
,
Z. S.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z. P.
,
Guo
,
F. S.
,
Ding
,
L.
, and
Simon
,
T. W.
,
2019
, “
Conjugate Heat Transfer Measurements and Predictions for the Vane Endwall of a High-Pressure Turbine With Upstream Purge Flow
,”
Int. J. Heat Mass Transfer
,
140
, pp.
634
647
.
29.
Yang
,
X.
,
Feng
,
Z.
, and
Simon
,
T. W.
,
2019
, “
Conjugate Heat Transfer Modeling of a Turbine Vane Endwall With Thermal Barrier Coatings
,”
Aeronaut. J.
,
123
(
1270
), pp.
1959
1981
.
30.
Chi
,
Z.
,
Liu
,
H.
, and
Zang
,
S.
,
2018
, “
Multi-objective Optimization of the Impingement-Film Cooling Structure of a Gas Turbine Endwall Using Conjugate Heat Transfer Simulations
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021004
.
31.
Yang
,
X.
,
Liu
,
Z. S.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z. P.
, and
Simon
,
T. W.
,
2020
, “
Comparisons of Endwall Overall Effectiveness From Two Film Hole Distribution Patterns at Low and High Exit Mach Numbers
,”
ASME J. Turbomach.
,
142
(
10
), p.
101007
.
32.
Bu
,
H.
,
Yang
,
Y.
,
Song
,
L.
, and
Li
,
J.
,
2022
, “
Improving the Film Cooling Performance of a Turbine Endwall With Multi-fidelity Modeling Considering Conjugate Heat Transfer
,”
ASME J. Turbomach.
,
144
(
1
), p.
011011
.
33.
Wu
,
H.
,
Yang
,
X.
, and
Feng
,
Z. P.
,
2023
, “
Experimental Decoupled-Analysis of Overall Cooling Effectiveness for a Turbine Endwall With Internal and External Cooling Configurations
,”
Appl. Therm. Eng.
,
228
, p.
120435
.
34.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME Turbo Expo
, Paper No. GT2004-53998.
35.
Yang
,
X.
,
Zhao
,
Q.
,
Wu
,
H.
,
Hao
,
Z.
, and
Feng
,
Z.
,
2022
, “
Heat Transfer Measurements of a Turbine Endwall With Engine-Representative Freestream Turbulence and Inlet Swirl
,”
Exp. Heat Transfer
,
35
(
5
), pp.
653
673
.
36.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
37.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2022
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME J. Turbomach.
,
144
(
12
), p.
121003
.
38.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
39.
Ornano
,
F.
, and
Povey
,
T.
,
2017
, “
Experimental and Computational Study of the Effect of Momentum-Flux Ratio on High-Pressure Nozzle Guide Vane Endwall Cooling Systems
,”
ASME J. Turbomach.
,
139
(
12
), p.
121002
.
40.
ANSYS Inc.
,
2021
,
ANSYS CFX-Solver Theory Guide, Release 2021 R2
,
ANSYS Inc.
,
Canonsburg, PA
.
41.
Yang
,
X.
,
Wu
,
H.
, and
Feng
,
Z. P.
,
2022
, “
Jet Impingement Heat Transfer Characteristics With Variable Extended Jet Holes Under Strong Crossflow Conditions
,”
Aerospace
,
9
(
1
), p.
44
.
42.
Jones
,
F. B.
,
Fox
,
D. W.
, and
Bogard
,
D. G.
,
2019
, “
Evaluating the Usefulness of RANS in Film Cooling
,”
ASME Turbo Expo
, Paper No. GT2019-91788.
You do not currently have access to this content.