Abstract

Turbine blades generally present surface roughness introduced in the manufacturing process or caused by in-service degradation, which can have a significant impact on aero-thermal performance. A better understanding of the fundamental physical mechanisms arising from the interaction between the roughness and the turbine flow at engine-relevant conditions can provide insights for the design of blades with improved efficiency and longer operational life. To this end, a high-fidelity numerical framework combining a well-validated solver for direct numerical simulation and a second-order accurate immersed boundary method is employed to predict roughness-induced aero-thermal effects on an LS89 high-pressure turbine (HPT) blade at engine-relevant conditions. Different amplitudes and distributions of surface roughness are investigated and a reference smooth-blade simulation under the same flow conditions is conducted for comparison. Roughness of increasing amplitude progressively shifts the blade suction side boundary layer transition upstream, producing larger values of the turbulent kinetic energy and higher total wake losses. The on-surface data-capturing capabilities of the numerical framework provide direct measurements of the heat flux and the skin friction coefficient, hence offering quantitative information between the surface topology and engineering-relevant performance parameters. This work may provide a benchmark for future numerical studies of turbomachinery flows with roughness.

References

1.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p. 021004.
2.
McClain
,
S. T.
,
Hanson
,
D. R.
,
Cinnamon
,
E.
,
Snyder
,
J. C.
,
Kunz
,
R. F.
, and
Thole
,
K. A.
,
2021
, “
Flow in a Simulated Turbine Blade Cooling Channel With Spatially Varying Roughness Caused by Additive Manufacturing Orientation
,”
ASME J. Turbomach.
,
143
(
7
), p.
071013
.
3.
Nikuradse
,
J.
,
1950
, “
Laws of Flow in Rough Pipes
,”
J. Appl. Phys.
,
3
, p.
399
.
4.
Schlichting
,
H.
,
1937
,
Experimental Investigation of the Problem of Surface Roughness
, Vol.
823
,
National Advisory Committee for Aeronautics
,
Washington, DC
.
5.
Jiménez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid. Mech.
,
36
(
1
), pp.
173
196
.
6.
Chung
,
D.
,
Hutchins
,
N.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2021
, “
Predicting the Drag of Rough Surfaces
,”
Annu. Rev. Fluid. Mech.
,
53
(
1
), pp.
439
471
.
7.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
8.
Hoffs
,
A.
,
Drost
,
U.
, and
Bölcs
,
A.
,
1996
, “
Heat Transfer Measurements on a Turbine Airfoil at Various Reynolds Numbers and Turbulence Intensities Including Effects of Surface Roughness
.”
9.
Bons
,
J. P.
,
2002
, “
St and Cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.
10.
Bons
,
J. P.
, and
McClain
,
S. T.
,
2004
, “
The Effect of Real Turbine Roughness With Pressure Gradient on Heat Transfer
,”
ASME J. Turbomach.
,
126
(
3
), pp.
385
394
.
11.
Montis
,
M.
,
Niehuis
,
R.
, and
Fiala
,
A.
,
2010
, “
Effect of Surface Roughness on Loss Behaviour, Aerodynamic Loading and Boundary Layer Development of a Low-Pressure Gas Turbine Airfoil
,”
Proceedings of the ASME Turbo Expo
,
Glasgow, UK
,
June 14–18
, Vol. 7, pp.
1535
1547
.
12.
Montis
,
M.
,
Niehuis
,
R.
, and
Fiala
,
A.
,
2011
, “
Aerodynamic Measurements on a Low Pressure Turbine Cascade With Different Levels of Distributed Roughness
,”
Proceedings of the ASME Turbo Expo
,
Vancouver, British Columbia, Canada
,
June 6–10
, Vol. 7, pp.
457
467
.
13.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2012
, “
Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade—Part I: External Heat Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041006
.
14.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2012
, “
Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade–Part II: Aerodynamic Losses
,”
ASME J. Turbomach.
,
134
(
4
), p.
041007
.
15.
Michelassi
,
V.
,
Martelli
,
F.
,
De´nos
,
R.
,
Arts
,
T.
, and
Sieverding
,
C. H.
,
1999
, “
Unsteady Heat Transfer in Stator–Rotor Interaction by Two-Equation Turbulence Model
,”
ASME J. Turbomach.
,
121
(
3
), pp.
436
447
.
16.
Pichler
,
R.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
Investigation of the Accuracy of RANS Models to Predict the Flow Through a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
138
(
12
), p.
121009
.
17.
Joo
,
J.
,
Medic
,
G.
, and
Sharma
,
O.
,
2016
, “
Large-Eddy Simulation Investigation of Impact of Roughness on Flow in a Low-Pressure Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
, p.
V02CT39A053
.
18.
Dassler
,
P.
,
Kožulović
,
D.
, and
Fiala
,
A.
,
2012
, “
An Approach for Modelling the Roughness-Induced Boundary Layer Transition Using Transport Equations
,”
ECCOMAS 2012 – European Congress on Computational Methods in Applied Sciences and Engineering
,
Vienna, Austria
,
Sept. 10–14
, pp.
507
524
.
19.
Feindt
,
E. G.
,
1956
, “Untersuchungen über die Abhängigkeit des Umschlages laminar-turbulent von der Oberflächenrauhigkeit und der Druckverteilung,”
Jahrbuch der Schiffbautechnischen Gesellschaft
,
Schiffbautechnische Gesellschaft
,
Braunschweig
, pp.
180
203
.
20.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press: Taylor & Francis Group
,
Boca Raton, FL
.
21.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2021
, “
Fluid Dynamics of Axial Turbomachinery: Blade- and Stage-Level Simulations and Models
,”
Annu. Rev. Fluid. Mech.
,
54
(
1
), pp.
255
285
.
22.
Sandberg
,
R.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines–Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
23.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
Compressible Direct Numerical Simulation of Low-Pressure Turbines-Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
24.
Ikeda
,
T.
, and
Durbin
,
P. A.
,
2007
, “
Direct Simulations of a Rough-Wall Channel Flow
,”
J. Fluid. Mech.
,
571
, pp.
235
263
.
25.
Lee
,
J. H.
,
Sung
,
H. J.
, and
Krogstad
,
P.
,
2011
, “
Direct Numerical Simulation of the Turbulent Boundary Layer Over a Cube-Roughened Wall
,”
J. Fluid. Mech.
,
669
, pp.
397
431
.
26.
Chan
,
L.
,
Macdonald
,
M.
,
Chung
,
D.
,
Hutchins
,
N.
, and
Ooi
,
A.
,
2015
, “
A Systematic Investigation of Roughness Height and Wavelength in Turbulent Pipe Flow in the Transitionally Rough Regime
,”
J. Fluid. Mech.
,
771
, pp.
743
777
.
27.
Jelly
,
T. O.
,
Chin
,
R. C.
,
Illingworth
,
S. J.
,
Monty
,
J. P.
,
Marusic
,
I.
, and
Ooi
,
A.
,
2020
, “
A Direct Comparison of Pulsatile and Non-Pulsatile Rough-Wall Turbulent Pipe Flow
,”
J. Fluid. Mech.
,
895
, pp.
1
14
.
28.
Jelly
,
T. O.
,
Nardini
,
M.
,
Rosenzweig
,
M.
,
Leggett
,
J.
,
Marusic
,
I.
, and
Sandberg
,
R. D.
,
2023
, “
High-Fidelity Computational Study of Roughness Effects on High Pressure Turbine Performance and Heat Transfer
,”
Int. J. Heat Fluid Flow
,
101
, pp.
2018
2023
.
29.
Nardini
,
M.
,
Kozul
,
M.
,
Jelly
,
T.
, and
Sandberg
,
R.
,
2023
, “
Direct Numerical Simulation of Transitional and Turbulent Flows Over Multi-Scale Surface Roughness–Part I: Methodology and Challenges
,”
ASME J. Turbomach.
, pp.
1
37
.
30.
Touber
,
E.
, and
Sandham
,
N. D.
,
2009
, “
Large-Eddy Simulation of Low-Frequency Unsteadiness in a Turbulent Shock-Induced Separation Bubble
,”
Theor. Comput. Fluid Dyn.
,
23
(
2
), pp.
79
107
.
31.
Deuse
,
M.
, and
Sandberg
,
R. D.
,
2020
, “
Implementation of a Stable High-Order Overset Grid Method for High-Fidelity Simulations
,”
Comput. Fluids
,
211
, p.
104449
.
32.
Monkewitz
,
P. A.
,
Chauhan
,
K. A.
, and
Nagib
,
H. M.
,
0000
, “
Comparison of Mean Flow Similarity Laws in Zero Pressure Gradient Turbulent Boundary Layers
,”
Phys. Fluids
,
20
(
10
), p.
105102
.
33.
Bons
,
J.
,
2005
, “
A Critical Assessment of Reynolds Analogy for Turbine Flows
,”
ASME J. Heat. Transfer-Trans. ASME
,
127
(
5
), pp.
472
485
.
34.
Praisner
,
T. J.
,
Clark
,
J. P.
,
Nash
,
T. C.
,
Rice
,
M. J.
, and
Grover
,
E. A.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery
,”
Proceedings of the ASME Turbo Expo
,
Barcelona, Spain
,
May 8–11
, pp.
1821
1830
.
35.
Leggett
,
J.
,
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2023
, “
High-Fidelity Simulation Study of the Unsteady Flow Effects on High-Pressure Turbine Blade Performance
,”
ASME J. Turbomach.
,
145
(
1
), p.
011002
.
You do not currently have access to this content.