Abstract

Practical strategy for the thermal evaluation of film-cooled blade is of great importance to the gas turbine community. Due to the physical or methodology limitations, it is difficult to evaluate the blade’s thermal performance at simulated engine conditions. The present study proposed novel focal-sweep-based phosphor thermometry for blade cooling inspection. While Mg4FGeO6:Mn (MFG) served as the temperature sensor to quantify the blade temperatures as well as simulated the thermal barrier coating (TBC) effect, the focal sweep method was adopted to overcome the optical constraints in cascade testing. The obtained MFG results of microstructures, jet impingement, and anti-erosion test demonstrated that the MFG phosphor is robust enough to simulate the thermal insulation effect of TBC and can withstand high-speed flow erosion. Furthermore, the proposed strategy clearly captured the blade temperature distributions (mainstream at T0,=850K) with high spatial resolution, which was then successfully remapped onto the three-dimensional twisted blade. Additional comparisons with the thermocouples demonstrated that the simulated TBC has a thermal insulation effect of about 68 K. This study addressed the common problems of phosphor thermometry in blade cooling evaluation, offering a practical strategy for future thermal diagnostics of the gas turbine.

References

1.
Boyce
,
M. P.
,
2012
,
Gas Turbine Engineering Handbook
, 4th ed.,
Elsevier
,
Waltham, MA
.
2.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
New York
.
3.
Zhou
,
W.
,
Peng
,
D.
,
Wen
,
X.
,
Liu
,
Y.
, and
Hu
,
H.
,
2018
, “
Unsteady Analysis of Adiabatic Film Cooling Effectiveness Behind Circular, Shaped, and Sand-Dune-Inspired Film Cooling Holes: Measurement Using Fast-Response Pressure-Sensitive Paint
,”
Int. J. Heat Mass Transf.
,
125
, pp.
1003
1016
.
4.
Qenawy
,
M.
,
Chen
,
H.
,
Peng
,
D.
,
Liu
,
Y.
, and
Zhou
,
W.
,
2020
, “
Flow Structures and Unsteady Behaviors of Film Cooling From Discrete Holes Fed by Internal Crossflow
,”
ASME J. Turbomach.
,
142
(
4
), p.
041007
.
5.
Shao
,
H.
,
Qenawy
,
M.
,
Zhang
,
T.
,
Peng
,
D.
,
Liu
,
Y.
, and
Zhou
,
W.
,
2021
, “
Experimental Study of Oscillating Freestream Effect on the Spatiotemporal Distributions of Leading-Edge Film Cooling
,”
ASME J. Turbomach.
,
143
(
1
), p.
011002
.
6.
Davidson
,
F. T.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2013
, “
A Study of Deposition on a Turbine Vane With a Thermal Barrier Coating and Various Film Cooling Geometries
,”
ASME J. Turbomach.
,
136
(
4
), p.
041009
.
7.
Meng
,
Z.
,
Liu
,
Y.
,
Li
,
Y.
, and
He
,
X.
,
2022
, “
The Performance Evaluation for Thermal Protection of Turbine Vane With Film Cooling and Thermal Barrier Coating
,”
Appl. Therm. Eng.
,
210
, p.
118405
.
8.
Vo
,
D.-T.
,
Mai
,
T. D.
,
Kim
,
B.
, and
Ryu
,
J.
,
2022
, “
Numerical Study on the Influence of Coolant Temperature, Pressure, and Thermal Barrier Coating Thickness on Heat Transfer in High-Pressure Blades
,”
Int. J. Heat Mass Transf.
,
189
, p.
122715
.
9.
Pu
,
J.
,
Zhang
,
T.
,
Zhou
,
W.
,
Wang
,
J.
, and
Wu
,
W.
,
2022
, “
Overall Thermal Performances of Backward Film Cooling With Simulated Surface Thermal Barrier Coatings at Various Walls, Case Stud
,”
Therm. Eng.
,
32
, p.
101876
.
10.
Mensch
,
A.
,
Thole
,
K. A.
, and
Craven
,
B. A.
,
2014
, “
Conjugate Heat Transfer Measurements and Predictions of a Blade Endwall With a Thermal Barrier Coating
,”
ASME J. Turbomach.
,
136
(
12
), p.
121003
.
11.
Davidson
,
F. T.
,
KistenMacher
,
D. A.
, and
Bogard
,
D. G.
,
2013
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches
,”
ASME J. Turbomach.
,
136
(
4
), p.
041007
.
12.
Maikell
,
J.
,
Bogard
,
D.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2011
, “
Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects
,”
ASME J. Turbomach.
,
133
(
1
), p.
011014
.
13.
Kistenmacher
,
D. A.
,
Todd Davidson
,
F.
, and
Bogard
,
D. G.
,
2014
, “
Realistic Trench Film Cooling With a Thermal Barrier Coating and Deposition
,”
ASME J. Turbomach.
,
136
(
9
), p.
091002
.
14.
Horner
,
M. J.
,
Yoon
,
C.
,
Furgeson
,
M.
,
Oliver
,
T. A.
, and
Bogard
,
D. G.
,
2022
, “
Experimental and Computational Investigation of Integrated Internal and Film Cooling Designs Incorporating a Thermal Barrier Coating
,”
ASME J. Turbomach.
,
144
(
9
), p.
091001
.
15.
Straub
,
D. L.
,
Sidwell
,
T. G.
,
Casleton
,
K. H.
,
Alvin
,
M. A.
,
Chien
,
S.
, and
Chyu
,
M. K.
,
2012
, “
High Temperature Film Cooling Test Facility and Preliminary Test Results
,”
Turbo Expo: Power for Land, Sea, and Air
,
Denmark
,
June 11–15
, pp.
1661
1671
.
16.
Ostrowski
,
T.
, and
Schiffer
,
H. P.
,
2021
, “
High-Resolution Heat Transfer Measurements on a Rotating Turbine Endwall With Infrared Thermography
,”
Meas. Sci. Technol.
,
32
(
12
), p.
125207
.
17.
Christensen
,
L.
,
Celestina
,
R.
,
Sperling
,
S.
,
Mathison
,
R.
,
Aksoy
,
H.
, and
Liu
,
J.
,
2021
, “
Infrared Temperature Measurements of the Blade Tip for a Turbine Operating at Corrected Engine Conditions
,”
ASME J. Turbomach.
,
143
(
10
), p.
101005
.
18.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Haldeman
,
C. W.
,
Markham
,
J. R.
,
Cosgrove
,
J. E.
,
Carlson
,
A. E.
, and
Scire
,
J. J.
,
2021
, “
Acquisition and Processing Considerations for Infrared Images of Rotating Turbine Blades
,”
ASME J. Turbomach.
,
143
(
4
), p.
041013
.
19.
Brübach
,
J.
,
Pflitsch
,
C.
,
Dreizler
,
A.
, and
Atakan
,
B.
,
2013
, “
On Surface Temperature Measurements With Thermographic Phosphors: A Review
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
37
60
.
20.
Cai
,
T.
,
Peng
,
D.
,
Liu
,
Y. Z.
,
Zhao
,
X. F.
, and
Kim
,
K. C.
,
2017
, “
A Novel Lifetime-Based Phosphor Thermography Using Three-Gate Scheme and a Low Frame-Rate Camera
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
53
60
.
21.
Allison
,
S. W.
, and
Gillies
,
G. T.
,
1997
, “
Remote Thermometry With Thermographic Phosphors: Instrumentation and Applications
,”
Rev. Sci. Instrum.
,
68
(
7
), pp.
2615
2650
.
22.
Goss
,
L. P.
,
Smith
,
A. A.
, and
Post
,
M. E.
,
1989
, “
Surface Thermometry by Laser-Induced Fluorescence
,”
Rev. Sci. Instrum.
,
60
(
12
), pp.
3702
3706
.
23.
Kontis
,
K.
,
Syogenji
,
Y.
, and
Yoshikawa
,
N.
,
2002
, “
Surface Thermometry by Laser-Induced Fluorescence of Dy3+:YAG
,”
Aeronaut. J.
,
106
(
1062
), pp.
453
457
.
24.
Kwong
,
W. Y.
,
2014
, “
Development of Thermographic Phosphor Diagnostics for Gas Turbine Temperature Measurements
,”
Ph.D. thesis
,
University of Toronto
,
Toronto, Canada
.
25.
Feist
,
J. P.
,
Heyes
,
A. L.
, and
Seefelt
,
S.
,
2003
, “
Thermographic Phosphor Thermometry for Film Cooling Studies in Gas Turbine Combustors
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
217
(
2
), pp.
193
200
.
26.
Seyfried
,
H.
,
Särner
,
G.
,
Omrane
,
A.
,
Richter
,
M.
,
Schmidt
,
H.
, and
Aldén
,
M.
,
2008
, “
Optical Diagnostics for Characterization of a Full-Size Fighter-Jet Afterburner
,”
Proceedings of ASME Turbo Expo 2005 Power Land, Sea, Air. Vol. 1 Turbo Expo 2005
,
Reno, NV
,
Nov. 11
, pp.
813
819
.
27.
Seyfried
,
H.
,
Richter
,
M.
,
Aldén
,
M.
, and
Schmidt
,
H.
,
2007
, “
Laser-Induced Phosphorescence for Surface Thermometry in the Afterburner of an Aircraft Engine
,”
AIAA J.
,
45
(
12
), pp.
2966
2971
.
28.
Shao
,
H.
,
Zhang
,
X.
,
Peng
,
D.
,
Liu
,
Y.
,
Zhou
,
W.
,
Chen
,
W.
,
He
,
Y.
, and
Zeng
,
F.
,
2022
, “
Novel Focal Sweep Strategy for Optical Aerothermal Measurements of Film-Cooled Gas Turbine Blades With Highly Inclined Viewing Angle
,”
ASME J. Turbomach.
,
144
(
3
), p.
031008
.
29.
Cai
,
T.
,
Li
,
Y.
,
Guo
,
S.
,
Peng
,
D.
,
Zhao
,
X.
, and
Liu
,
Y.
,
2019
, “
Pressure Effect on Phosphor Thermometry Using Mg4FGeO6:Mn
,”
Meas. Sci. Technol.
,
30
(
2
), p.
027001
.
30.
Yu
,
Z. X.
,
Huang
,
J. B.
,
Wang
,
W. Z.
,
Yu
,
J. Y.
, and
Wu
,
L. M.
,
2016
, “
Deposition and Properties of a Multilayered Thermal Barrier Coating
,”
Surf. Coatings Technol.
,
288
, pp.
126
134
.
31.
Peng
,
D.
,
Liu
,
Y.
,
Zhao
,
X.
, and
Kim
,
K. C.
,
2016
, “
Comparison of Lifetime-Based Methods for 2D Phosphor Thermometry in High-Temperature Environment
,”
Meas. Sci. Technol.
,
27
(
9
), p.
95201
.
You do not currently have access to this content.