Abstract

The relative casing motion can significantly influence the turbine blade tip aerothermal performance. In this study, experimental investigation was conducted in a newly developed high-speed disk rotor rig which can mimic engine realistic high-speed casing relative motion while enabling full optical access to a transonic turbine blade tip surface. Spatially-resolved tip heat transfer data, including heat transfer coefficient and film cooling effectiveness, were obtained for a cooled transonic squealer tip by infrared transient thermal measurement. Combined with closely coupled Reynolds-averaged Navier–Stokes computational fluid dynamics (CFD) analysis, this paper reveals an interesting interaction mechanism between the cooling injections from the pressure side and the cavity floor with and without the effect of relative casing motion. Both experimental data and CFD results show a consistent trend in both heat transfer and cooling performance. With cavity cooling only, the cooling performance reduces with the effect of relative casing motion. However, with additional cooling injection from the pressure side, a significant improvement in the combined cooling performance with the relative casing motion can be observed. Such opposite trend highlights the importance of relative casing motion when ranking different tip cooling designs. With the consideration of relative casing motion, extra tip cooling benefit can be obtained by combining cooling injections from two different locations.

References

1.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.
2.
Jiang
,
H.
,
He
,
L.
,
Zhang
,
Q.
, and
Wang
,
L.
,
2018
, “
On Scaling Method to Investigate High-Speed Over-Tip-Leakage Flow at Low-Speed Condition
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062605
.
3.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.
4.
Chyu
,
M. K.
,
Metzger
,
D. E.
, and
Hwan
,
C. L.
,
1987
, “
Heat Transfer in Shrouded Rectangular Cavities
,”
J. Thermophys. Heat Transfer
,
1
(
3
), pp.
247
252
.
5.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
.
6.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2008
, “
Aero-Thermal Investigations of Tip Leakage Flow in Axial Flow Turbines: Part II—Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
.
7.
Zhou
,
C.
,
Hodson
,
H.
,
Tibbott
,
I.
, and
Stokes
,
M.
,
2012
, “
Effects of Endwall Motion on the Aerothermal Performance of a Winglet Tip in a HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061036
.
8.
Yaras
,
M. I.
,
Sjolander
,
S. A.
, and
Kind
,
R. J.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part 2-Downstream Flow Field and Blade Loading
,”
ASME J. Turbomach.
,
114
(
3
), pp.
652
659
.
9.
Zhu
,
D.
,
Zhang
,
Q.
,
Lu
,
S.
, and
Teng
,
J.
,
2020
, “
Relative Casing Motion Effect on Squealer Tip Cooling Performance at Tight Tip Clearance
,”
ASME J. Therm. Sci. Eng. Appl.
, pp.
1
18
. .
10.
Zhang
,
Q.
,
O'Dowd
,
D.
,
He
,
L.
,
Oldfield
,
M.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
11.
Zhou
,
C.
,
2014
, “
Aerothermal Performance of Different Tips in Transonic Turbine Cascade With End-Wall Motion
,”
J. Propul. Power
,
30
(
5
), pp.
1
12
.
12.
Virdi
,
A.
,
Zhang
,
Q.
,
He
,
L.
,
Li
,
H.
, and
Hunsley
,
R.
,
2015
, “
Aerothermal Performance of Shroudless Turbine Blade Tips With Relative Casing Movement Effects
,”
J. Propul. Power
,
31
(
2
), pp.
527
536
.
13.
Acharya
,
S.
,
Yang
,
H.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
, “
Numerical Simulation of Film Cooling on the Tip of a Gas Turbine Blade
,”
ASME Turbo Expo: Power for Land, Sea, & Air
,
Amsterdam, The Netherlands
,
June 3–6
.
14.
Wang
,
J.
,
Sunde
,
B.
,
Zeng
,
M.
, and
Wang
,
Q.
,
2012
, “
Influence of Different Rim Widths and Blowing Ratios on Film Cooling Characteristics for a Blade Tip
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
6
), p.
061701
.
15.
He
,
K.
,
2017
, “
Investigations of Film Cooling and Heat Transfer on a Turbine Blade Squealer Tip
,”
Appl. Therm. Eng.
,
110
, pp.
630
647
. .
16.
Acharya
,
S.
,
Kramer
,
G.
,
Moreaux
,
L.
, and
Nakamata
,
C.
,
2010
, “
Squealer Tip Heat Transfer With Film Cooling
,”
Turbo Expo: Power for Land, Sea, Air
,
Glasgow, UK
,
June 14–18
, Vol. 43994, pp.
1869
1877
.
17.
Wang
,
Z.
,
Zhang
,
Q.
,
Liu
,
Y.
, and
He
,
L.
,
2014
, “
Impact of Cooling Injection on the Transonic Over-Tip Leakage Flow and Squealer Aerothermal Design Optimization
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062603
.
18.
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2013
, “
Numerical Simulation of Film Cooling on Rotating Blade Tips Within a High-Pressure Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
,
San Antonio, TX
,
June 3–7
.
19.
Acharya
,
S.
, and
Moreaux
,
L.
,
2014
, “
Numerical Study of the Flow Past a Turbine Blade Tip: Effect of Relative Motion Between Blade and Shroud
,”
ASME J. Turbomach.
,
136
(
3
), p.
031015
.
20.
Dean
,
R. C.
,
1954
, “
The Influence of Tip Clearance on Boundary-Layer Flow in a Rectilinear Cascade
,”
M.I.T. Gas Turbine Laboratory
, Report No. 27-3.
21.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades—Part I: Tip Gap Flow
,”
ASME J. Turbomach.
,
114
(
3
), pp.
652
659
.
22.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2003
, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
125
(
2
), pp.
267
273
.
23.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Lagraff
,
J. E.
, and
Jones
,
T. V.
,
2008
, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low Speed Turbine Blade Cascade With Moving Endwall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011001
.
24.
Palafox
,
P.
,
Oldfield
,
M.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
Lagraff
,
J. E.
,
2012
, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade With Moving Endwall
,”
ASME J. Turbomach.
,
134
(
2
), pp.
469
482
.
25.
Morphis
,
G.
, and
Bindon
,
J. P.
,
1988
, “
The Effects of Relative Motion, Blade Edge Radius and Gap Size on the Blade Tip Pressure Distribution in an Annular Turbine Cascade With Clearance
,”
ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition
,
Amsterdam, The Netherlands
,
June 6–9
.
26.
Dunn
,
M. G.
,
Moller
,
J. C.
, and
Steele
,
R. C.
,
1989
, “
Operating Point Verification for a Large Shock Tunnel Test Facility
,” Paper No. WRDC-TR-2027.
27.
Dunn
,
M. G.
,
1986
, “
Heat-Flux Measurements for the Rotor of a Full-Stage Turbine: Part I—Time Averaged Results
,”
ASME J. Turbomach.
,
108
(
1
), pp.
90
97
.
28.
Dunn
,
M. G.
,
Bennett
,
W. A.
,
Delaney
,
R. A.
, and
Rao
,
K. V.
,
1992
, “
Investigation of Unsteady Flow Through a Transonic Turbine Stage: Data/Prediction Comparison for Time-Averaged and Phase-Resolved Pressure Data
,”
ASME J. Turbomach.
,
114
(
1
), pp.
91
99
.
29.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
1995
, “
Phase-Resolved Surface Pressure and Heat-Transfer Measurements on the Blade of a Two-Stage Turbine
,”
ASME J. Fluids Eng.
,
117
(
4
), pp.
653
658
.
30.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
692
698
.
31.
Molter
,
S. M.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Bergholz
,
R. F.
, and
Vitt
,
P.
,
2006
, “
Heat-Flux Measurements and Predictions for the Blade Tip Region of a High-Pressure Turbine
,”
ASME Turbo Expo: Power for Land, Sea, & Air
,
Barcelona, Spain
,
May 8–11
, pp.
49
60
.
32.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J.-C.
,
2014
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
33.
Tamunobere
,
O.
, and
Acharya
,
S.
,
2016
, “
Turbine Blade Tip Film Cooling With Blade Rotation—Part I: Tip and Pressure Side Coolant Injection
,”
ASME J. Turbomach.
,
138
(
9
), p.
091002
.
34.
Christensen
,
L.
,
Celestina
,
R.
,
Sperling
,
S.
,
Mathison
,
R.
,
Aksoy
,
H.
, and
Liu
,
J.
,
2021
, “
Infrared Temperature Measurements of the Blade Tip for a Turbine Operating at Corrected Engine Conditions
,”
ASME J. Turbomach.
,
143
(
10
), p.
101005
.
35.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Haldeman
,
C. W.
,
Markham
,
J. R.
,
Cosgrove
,
J. E.
,
Carlson
,
A. E.
, and
Scire
, Jr,
J. J.
,
2020
, “
Acquisition and Processing Considerations for Infrared Images of Rotating Turbine Blades
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 7C: Heat Transfer
,
Virtual, Online
,
Sept. 21–25
, p.
V07CT13A022
.
36.
Lu
,
S.
,
Zhang
,
Q.
, and
He
,
L.
,
2022
, “
A High-Speed Disk Rotor Rig Design for Tip Aerothermal Research
,”
ASME J. Turbomach.
,
144
(
5
), p.
051002
.
37.
Xie
,
W.
,
Peng
,
X.
,
Jiang
,
H.
,
Lu
,
S.
,
Gu
,
Y.
,
Chen
,
C.
, and
Zhang
,
Q.
,
2021
, “
Experimental Study of Turbine Blade Tip Heat Transfer With High-Speed Relative Casing Motion
,” GPPS Paper No. GPPS-TC-2021-0267.
38.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), pp.
739
750
.
39.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
40.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Oldfield
,
M. L. G.
,
Ligrani
,
P. M.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2011
, “
Aerothermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
133
(
4
), p.
041026
.
41.
Maffulli
,
R.
, and
He
,
L.
,
2014
, “
Dependence of External Heat Transfer Coefficient and Aerodynamics on Wall Temperature for 3-D Turbine Blade Passage
,” ASME Paper No. GT2014-26763.
You do not currently have access to this content.