Abstract

Rotating detonation engines (RDEs) are characterized by a thermodynamic cycle with an efficiency gain up to 15% at medium pressure ratios with respect to systems based on the conventional Joule–Bryton cycle. Multiple turbine designs can be considered, and this article deals with the supersonic inlet configuration. After having reviewed the main design steps of an exemplary RDE supersonic turbine, the article focuses on the considerable effects that endwall losses have on the performance of supersonic-inlet turbines and on the reasons why endwall contouring is strongly recommended for an efficient design. Parametric analyses, carried out by a novel in-house mean-line code validated against computational fluid dynamics (CFD), reveal that endwall friction losses contribute significantly to the overall stage loss. Endwall boundary layers also reduce the effective area, which can be critical for the self-starting capability of the supersonic channel. Therefore, a variable blade height geometry is necessary to extend the design space and guarantee a higher efficiency with respect to a constant-span configuration. The in-house CFD-based evolutionary shape optimization code was adapted to search for the optimal endwall shape for these unconventional machines. The optimal shape reduces shock losses and deviation angles and provides a significant gain in efficiency and work extraction. Finally, a novel technique is proposed to design the three-dimensional shape of the rotor based on the method of characteristics and tailored on the flow delivered by the stator.

References

1.
Brouckaert
,
J. F.
,
2019
, “
An Outlook on the Future of Turbofans and Aircraft Propulsion Systems
,”
EASN Conference
,
Athens, Greece
,
Sept. 3–6
.
2.
Gabrielli
,
P.
,
Gazzani
,
M.
,
Martelli
,
E.
, and
Mazzotti
,
M.
,
2018
, “
Optimal Design of Multi-energy Systems With Seasonal Storage
,”
Appl. Energy.
,
219
, pp.
408
424
.
3.
Wintenberger
,
E.
, and
Shepherd
,
J. E.
,
2006
, “
Thermodynamic Cycle Analysis for Propagating Detonations
,”
J. Propul. Power.
,
22
(
3
), pp.
694
698
.
4.
Jones
,
S. M.
, and
Paxson
,
D. E.
,
2013
, “
Potential Benefits to Commercial Propulsion Systems From Pressure Gain Combustion
,”
49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Joint Propulsion Conferences
,
San Jose, CA
,
July 14–17
.
5.
Frolov
,
S. M.
,
Dubrovskii
,
A. V.
, and
Ivanov
,
V. S.
,
2013
, “
Three-Dimensional Numerical Simulation of Operation Process in Rotating Detonation Engine
,”
Progress Propulsion Phys.
,
4
, pp.
467
488
.
6.
Sousa
,
J.
,
Paniagua
,
G.
, and
Collado Morata
,
E.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy.
,
195
, pp.
247
256
.
7.
Strakey
,
P.
,
Ferguson
,
D.
,
Sisler
,
A.
, and
Nix
,
A.
,
2016
, “
Computationally Quantifying Loss Mechanisms in a Rotating Detonation Engine
,”
54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum
,
San Diego, CA
,
Jan. 4–8
.
8.
Claflin
,
S.
,
Sonwane
,
S.
,
Lynch
,
E.
, and
Stout
,
J.
,
2014
, “
Recent Advances in Power Cycles Using Rotating Detonation Engines With Subcritical and Supercritical CO2
,”
4th International Symposium—Supercritical CO2 Power Cycles
,
Pittburgh, PA
,
Sept. 9–10
.
9.
Frolov
,
S. M.
,
Aksenov
,
V. S.
, and
Ivanov
,
V. S.
,
2015
, “
Experimental Proof of Zel’dovich Cycle Efficiency Gain Over Cycle With Constant Pressure Combustion for Hydrogen–Oxygen Fuel Mixture
,”
Int. J. Hydrogen. Energy.
,
40
(
21
), pp.
6970
6975
.
10.
Wolański
,
P.
,
2015
, “
Application of the Continuous Rotating Detonation to Gas Turbine
,”
Appl. Mech. Mater.
,
782
, pp.
3
12
.
11.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R. T.
,
Wagner
,
M.
, and
Schauer
,
F. R.
,
2017
, “
RDE Implementation Into an Open-Loop T63 Gas Turbine Engine
,”
55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum
,
Grapevine, CA
,
Jan. 9–13
.
12.
Fotia
,
M. L.
,
Schauer
,
F.
,
Kaemming
,
T.
, and
Hoke
,
J.
,
2015
, “
Experimental Study of the Performance of a Rotating Detonation Engine With Nozzle
,”
J. Propulsion Power
,
31
(
3
), pp.
674
681
.
13.
Paxson
,
D. E.
, and
Naples
,
A.
,
2017
, “
Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment
,”
AIAA SciTech Forum—55th AIAA Aerospace Sciences Meeting.
,
Grapevine, CA
,
Jan. 9–13
.
14.
Bach
,
E.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Stathopoulos
,
P.
,
2019
, “
Influence of Nozzle Guide Vane Orientation Relative to RDC Wave Direction
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
.
15.
Bach
,
E.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Stathopoulos
,
P.
,
2019
, “
Impact of Outlet Restriction on RDC Performance and Stagnation Pressure Rise
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
.
16.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy. Combust. Sci.
,
73
, pp.
182
234
.
17.
Ma
,
J. Z.
,
Luan
,
M. -Y.
,
Xia
,
Z. -J.
,
Wang
,
J. -P.
,
Zhang
,
S.-J.
,
Yao
,
S.-B.
, and
Wang
,
B.
,
2020
, “
Recent Progress, Development Trends, and Consideration of Continuous Detonation Engines
,”
AIAA J.
,
58
(
12
), pp.
4976
5035
.
18.
Paniagua
,
G.
,
Iorio
,
M. C.
,
Vinha
,
N.
, and
Sousa
,
J.
,
2014
, “
Design and Analysis of Pioneering High Supersonic Axial Turbines
,”
Int. J. Mech. Sci.
,
89
, pp.
65
77
.
19.
Sousa
,
J.
, and
Paniagua
,
G.
,
2015
, “
Entropy Minimization Design Approach of Supersonic Internal Passages
,”
Entropy
,
17
(
8
), pp.
5593
5610
.
20.
Braun
,
J.
,
Saavedra
,
J.
, and
Paniagua
,
G.
,
2017
, “
Evaluation of the Unsteadiness Across Nozzles Downstream of Rotating Detonation Combustors
,”
AIAA SciTech Forum—55th AIAA Aerospace Sciences Meeting
,
Grapevine, CA
,
Jan. 9–13
, pp.
1
12
.
21.
Sousa
,
J.
,
Paniagua
,
G.
, and
Saavedra
,
J.
,
2017
, “
Aerodynamic Response of Internal Passages to Pulsating Inlet Supersonic Conditions
,”
Computers Fluids
,
149
, pp.
31
40
.
22.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2019
, “
Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor
,”
ASME J. Eng. Gas. Turbines. Power.
,
141
(
3
), p.
031501
.
23.
Braun
,
J.
,
Saracoglu
,
B. H.
, and
Paniagua
,
G.
,
2017
, “
Unsteady Performance of Rotating Detonation Engines With Different Exhaust Nozzles
,”
J. Propul. Power.
,
33
(
1
), pp.
121
130
.
24.
Braun
,
J.
,
Paniagua
,
G.
, and
Ferguson
,
D.
,
2021
, “
Aero-Thermal Characterization of Accelerating and Diffusing Passages Downstream of Rotating Detonation Combustors
,”
ASME Turbo Expo 2021
, Paper No.
GT2021
.
25.
Mushtaq
,
N.
,
Colella
,
G.
, and
Gaetani
,
P.
,
2022
, “
Design and Parametric Analysis of a Supersonic Turbine for Rotating Detonation Engine Applications
,”
Int. J. Turbomachinery, Propulsion Power
,
7
(
1
).
26.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Thermal Power Plant Upgrade Via a Rotating Detonation Combustor and Retrofitted Turbine With Optimized Endwalls
,”
Int. J. Mech. Sci.
,
188
, p.
105918
.
27.
Bufi
,
E. A.
, and
Cinnella
,
P.
,
2018
, “
Preliminary Design Method for Dense-Gas Supersonic Axial Turbine Stages
,”
ASME J. Eng. Gas. Turbines. Power.
,
140
(
11
), p.
112605
.
28.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary-Layer Theory
, 8th ed.,
Springer
,
Heidelberg
.
29.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
30.
Coull
,
J. D.
,
2017
, “
Endwall Loss in Turbine Cascades
,”
ASME J. Turbomach.
,
139
(
8
), p.
081004
.
31.
Persico
,
G.
,
Pini
,
M.
,
Dossena
,
V.
, and
Gaetani
,
P.
,
2015
, “
Aerodynamics of Centrifugal Turbine Cascades
,”
ASME J. Eng. Gas. Turbines. Power.
,
137
(
11
), p.
112602
.
32.
Druguet
,
M. C.
, and
Zeitoun
,
D. E.
,
2003
, “
Influence of Numerical and Viscous Dissipation on Shock Wave Reflections in Supersonic Steady Flows
,”
Computers Fluids
,
32
, pp.
515
533
.
33.
Sod
,
G. A.
,
1977
, “
A Numerical Study of a Converging Cylindrical Shock
,”
J. Fluid. Mech.
,
83
(
4
), pp.
785
794
.
34.
Settles
,
G. S.
, and
Dodson
,
L. J.
,
1991
, “
Hypersonic Shock/Boundary-Layer Interaction Database
,”
AIAA 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference
,
Honolulu, HI
,
June 24–26
.
35.
Settles
,
G.
, and
Dodson
,
L.
,
1994
, “
Hypersonic Shock/Boundary-Layer Interaction Database: New and Corrected Data
,” Pennsylvania State University, NASA Contractor Report 177638.
36.
Settles
,
G. S.
,
Fitzpatrick
,
T. J.
, and
Bogdonoff
,
S. M.
,
1979
, “
Detailed Study of Attached and Separated Compression Corner Flowfields in High Reynolds Number Supersonic Flow
,”
AIAA. J.
,
17
(
6
), pp.
579
585
.
37.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
38.
Prasad
,
A.
,
2004
, “
Calculation of the Mixed-Out State in Turbomachine Flows
,”
ASME J. Turbomach.
,
127
(
3
), pp.
564
572
.
39.
Kantrowitz
,
A.
, and
Donaldson
,
C.
,
1945
, “
Preliminary Inversitagtion of Supersonic Diffusers
,” NACA Wartime Report, NACA ACR No. L5D20.
40.
Starken
,
H.
,
Yongxing
,
Z.
, and
Schreiber
,
H.-A.
,
1984
, “
Mass Flow Limitation of Supersonic Blade Rows due to Leading Edge Blockage
,”
Turbo Expo: Power for Land, Sea, and Air
,
1
.
41.
Goldman
,
L. J.
, and
Vanco
,
M. R.
,
1971
, “
Computer Program for Design of Two-Dimensional Sharp-Edged-Throat Supersonic Nozzle With Boundary-Layer Correction
,” NASA Technical Memorandum, X-2343.
42.
Moeckel
,
W. E.
,
1921
, “
Approximate Method for Predicting Form and Location of Detached Shock Waves Ahead of Plane or Axially Symmetric Bodies
,”
NASA TN 1921
,
211
(
1
), p.
130
.
43.
Anderson
,
J. D.
,
2003
,
Modern Compressible Flow: With Historical Perspective
,
McGraw-Hill Education
,
New York
.
44.
Stratford
,
B. S.
, and
Beavers
,
G. S.
,
1961
, “
The Calculation of the Compressible Turbulent Boundary Layer in an Arbitrary Pressure Gradient – A Correlation of certain previous Methods
,” Reports and Memoranda, 3207.
45.
Stewart
,
W.
,
1955
, “
Analysis of Two-Dimensional Compressible-Flow Loss Characterisitics Downstream of Turbomachine Blade Rows in Terms of Basic Boundary-Layer Characteristics
,” NACA Technical Note, 3515.
46.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
47.
Moore
,
J.
, and
Moore
,
J. G.
,
1983
, “
Entropy Production Rates From Viscous Flow Calculations: Part I—A Turbulent Boundary Layer Flow
,”
ASME 1983 International Gas Turbine Conference and Exhibit
,
Phoenix, AZ
,
Mar. 27–31
.
48.
Persico
,
G.
,
Rodriguez-Fernandez
,
P.
, and
Romei
,
A.
,
2019
, “
High-Fidelity Shape Optimization of Non-Conventional Turbomachinery by Surrogate Evolutionary Strategies
,”
ASME J. Turbomach.
,
141
(
8
), p.
081010
.
49.
Délery
,
J.
, and
Dussauge
,
J. P.
,
2009
, “
Some Physical Aspects of Shock Wave/Boundary Layer Interactions
,”
Shock Waves
,
19
(
6
), pp.
453
468
.
50.
Sun
,
C.
,
Zheng
,
H.
,
Li
,
Z.
,
Zhao
,
N.
,
Qi
,
L.
, and
Guo
,
H.
,
2019
, “
Effects of Diverging Nozzle Downstream on Flow Field Parameters of Rotating Detonation Combustor
,”
Applied Sciences (Switzerland)
,
9
(
20
), p.
4259
.
51.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2011
, “
Numerical Study of the Effects of Engine Size n Rotating Detonation Engines
,”
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 4–7
.
52.
Rankin
,
B. A.
,
Fotia
,
M. L.
,
Naples
,
A. G.
,
Stevens
,
C. A.
,
Hoke
,
J. L.
,
Kaemming
,
T. A.
,
Theuerkauf
,
S. W.
, and
Schauer
,
F. R.
,
2017
, “
Overview of Performance, Application, and Analysis of Rotating Detonation Engine Technologies
,”
J. Propul. Power.
,
33
(
1
), pp.
131
143
.
53.
Smith
,
S. F.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
J. Royal Aeronautical Soc.
,
69
(
655
), pp.
467
470
.
54.
Maksiuta
,
D.
,
Moroz
,
L.
,
Burlaka
,
M.
, and
Pastrikakis
,
V.
,
2019
, “
Deviation Angle in a Turbine Nozzle Cascade With Convergent Meridional Shape of Flow Path
,”
5th International Seminar on ORC Power Systems
,
Athens, Greece
,
Sept. 9–11
.
55.
Sousa
,
J.
,
Paniagua
,
G.
, and
Saavedra
,
J.
,
2017
, “
Aerodynamic Response of Internal Passages to Pulsating Inlet Supersonic Conditions
,”
Computers Fluids
,
149
, pp.
31
40
.
You do not currently have access to this content.