Abstract

Surge is a crucial problem for achieving a good working range of centrifugal compressor and power cycle safety. Effective and early detection of the surge is essential to avoid its onset. In this paper, experiments measuring the pressure and acoustic signals have been conducted to investigate the surge. The compressor prototype used in this study consists of an impeller wheel with backward blades, a vaneless diffuser, and a downstream discharge volute. The compressor prototype was instrumented with steady pressure and temperature sensors to characterize the performance map, a fast dynamic pressure sensor to measure the surge-induced pressure fluctuation, and 13 microphones to record the acoustic pressure on the inlet duct wall and in the far field. The transient experimental data were analyzed in time and frequency domains. The noise related to surge is identified as a chord sound from multiple sources that radiate acoustic impulse synchronously at the compression system surge frequency (below 10 Hz in the current experiment). A previously rarely discussed surge inception is identified from the acoustic spectrogram within the frequency range of 30–85 Hz, but not reflected by the pressure signal, in which an increase of the sound pressure level (SPL) is detected before the mass flow rate achieves the surge point. The mechanism is that the pressure fluctuation corresponding to the inception is too weak, within the detecting range of microphones that measures acoustic signals, and lower than the bottom limit of the commonly used dynamic pressure sensors. It suggests that acoustic measurement may have advantages in surge inception detection and prediction.

References

1.
Danlos
,
A.
,
Podevin
,
P.
,
Deligant
,
M.
,
Clenci
,
A.
,
Punov
,
P.
, and
Guilain
,
S.
,
2022
, “
Turbocharger Surge Bahavior for Sudden Valve Closing Downstream the Compressor and Effect of Actuating Variable Nozzle Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
960
(
1
), p.
012013
.
2.
Day
,
I.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
3.
Guillou
,
E.
,
Gancedo
,
M.
,
Gutmark
,
E.
, and
Mohamed
,
A.
,
2012
, “
PIV Investigation of the Flow Induced by a Passive Surge Control Method in a Radial Compressor
,”
Exp. Fluids
,
53
(
3
), pp.
619
635
.
4.
Gooding
,
W.
,
Fabian
,
J.
, and
Key
,
N.
,
2019
, “
LDV Characterization of Unsteady Vaned Diffuser Flow in a Centrifugal Compressor
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery
,
Phoenix, AZ
,
June 17–21
, Paper No. GT2019-90476.
5.
Higashimori
,
H.
,
Hasagawa
,
K.
,
Sumida
,
K.
, and
Suita
,
T.
,
2004
, “
Detailed Flow Study of Mach Number 1.6 High Transonic Flow With a Shock Wave in a Pressure Ratio 11 Centrifugal Compressor Impeller
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2004, Parts A and B
,
Vienna, Austria
,
June 14–17
,
ASME
, pp.
771
779
, Paper No. GT2004-53435.
6.
Dehner
,
R.
,
Selamet
,
A.
,
Steiger
,
M.
,
Sun
,
H.
,
Hanna
,
D.
, and
Hu
,
L.
,
2016
, “
Acoustic Measurements From an Automotive Centrifugal Compressor With a Switchable Dual-Port Casing Treatment for Extended Operating Range
,”
Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
, Paper No. GT2016-56705.
7.
Raitor
,
T.
, and
Neise
,
W.
,
2008
, “
Sound Generation in Centrifugal Compressors
,”
J. Sound Vib.
,
314
(
3–5
), pp.
738
756
.
8.
Morfey
,
C.
,
1971
, “
Sound Transmission and Generation in Ducts With Flow
,”
J. Sound Vib.
,
14
(
1
), pp.
37
55
.
9.
Dehner
,
R. D.
,
Selamet
,
A.
,
Steiger
,
M.
,
Miazgowicz
,
K.
, and
Karim
,
A.
,
2017
, “
The Effect of Ported Shroud Recirculating Casing Treatment on Turbocharger Centrifugal Compressor Acoustics
,”
SAE Int. J. Engines
,
10
(
4
), pp.
2057
2066
.
10.
Sharma
,
S.
,
Garcia-Tiscar
,
J.
,
Allport
,
J. M.
,
Jupp
,
M. L.
, and
Nickson
,
A. K.
,
2018
, “
Impact of Impeller Casing Treatment on the Acoustic of a Small High Speed Centrifugal Compressor
,”
Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, Paper No. GT2018-76815.
11.
Evans
,
D.
, and
Ward
,
A.
,
2005
, “
Minimising Turbocharger Whoosh Noise for Diesel Powertrains
,” Tech. Rep., SAE Technical Paper.
12.
Trochon
,
E.
,
2001
, “
A New Type of Silencers for Turbocharger Noise Control
,” Tech. Rep., SAE Technical Paper.
13.
Teng
,
C.
, and
Homco
,
S.
,
2009
, “
Investigation of Compressor Whoosh Noise in Automotive Turbochargers
,”
SAE Int. J. Passenger Cars Electron. Electr. Syst.
,
2
(
2009-01-2053
), pp.
1345
1351
.
14.
Figurella
,
N.
,
Dehmer
,
R.
,
Selamet
,
A.
,
Tallio
,
K.
,
Miazgowicz
,
K.
,
Wade
,
R.
,
Karim
,
A.
,
Keller
,
P.
, and
Shutty
,
J.
,
2014
, “
Effect of Inlet Vanes on Centrifugal Compressor Acoustics and Performance
,”
Noise Control Eng. J.
,
62
(
4
), pp.
232
237
.
15.
Sharma
,
S.
,
Broatch
,
A.
,
Garcia-Tiscar
,
J.
,
Allport
,
J. M.
, and
Nickson
,
A. K.
,
2019
, “
Acoustic Characterisation of a Small High-Speed Centrifugal Compressor With Casing Treatment: An Experimental Study
,”
Aerosp. Sci. Technol.
,
95
, p.
105518
.
16.
Sun
,
Z.
,
Zou
,
W.
, and
Zheng
,
X.
,
2018
, “
Instabiltiy Detection of Centrifugal Compressors by Means of Acoustic Measurements
,”
Aerosp. Sci. Technol.
,
82–83
, pp.
628
635
.
17.
Zhao
,
B.
,
Zhou
,
T.
, and
Yang
,
C.
,
2022
, “
Experimental Investigations on Effects of the Self-Circulation Casing Treatment on Acoustic and Surge Characteristics in a Centrifugal Compressor
,”
Aerosp. Sci. Technol.
,
131
, p.
108002
.
18.
den Braembussche
,
R. V.
,
2019
,
Design and Analysis of Centrifugal Compressors
,
John Wiley & Sons
,
Hoboken, NJ
.
19.
Galindo
,
J.
,
Tiseira
,
A.
,
Navarro
,
R.
,
Tarí
,
D.
, and
Meano
,
C. M.
,
2017
, “
Effect of the Inlet Geometry on Performance, Surge Margin and Noise Emission of an Automotive Turbocharger Compressor
,”
Appl. Therm. Eng.
,
110
, pp.
875
882
.
20.
Rané
,
V. D. B.
,
2020
,
Design and Analysis of Centrifugal Compressor
,
Wiley
,
New York
.
21.
Mizuki
,
S.
,
Watanabe
,
I.
, and
Hattori
,
T.
, “
Reverse Flow Phenomena Within Centrifugal Compressor Channels at Lower Flow Rate
,” ASME Paper No. 76-GT-86.
22.
Torregrosa
,
A. J.
,
Broatch
,
A.
,
Margot
,
X.
,
García-Tíscar
,
J.
,
Narvekar
,
Y.
, and
Cheung
,
R.
,
2017
, “
Local Flow Measurements in a Turbocharger Compressor Inlet
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
542
553
.
23.
Wernet
,
M. P.
,
Bright
,
M. M.
, and
Skoch
,
G. J.
,
2001
, “
An Investigation of Surge in a High-Speed Centrifugal Comrepssor Using Digital PIV
,”
ASME J. Turbomach.
,
123
(
2
), pp.
418
428
.
24.
Bontempo
,
R.
,
Cardone
,
M.
,
Manna
,
M.
, and
Vorraro
,
G.
,
2015
, “
Steady and Unsteady Experimental Analysis of a Turbocharger for Automotive Applications
,”
Energy Convers. Manage.
,
99
, pp.
72
80
.
25.
Galindo
,
J.
,
Serrano
,
J.
,
Guardiola
,
C.
, and
Cervelló
,
C.
,
2006
, “
Surge Limit Definition in a Specific Test Bench for the Characterization of Automotive Turbochargers
,
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
449
462
.
26.
Marelli
,
S.
,
Misley
,
A.
,
Silviestri
,
P.
,
Capobianco
,
M.
,
Taylor
,
A.
, and
Canova
,
M.
,
2018
, “
Experimental Investigation on Surge Phenomena in an Automotive Turbocharger Compressor
,” SAE Technical Paper, Paper No. 2018-01-0976.
27.
Marelli
,
S.
,
Misley
,
A.
, and
Ferrando
,
M.
,
2020
, “
Experimental Investigation in Turbocharger Compressors During Surge Operation
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 8: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Microturbines, Turbochargers, and Small Turbomachines
,
London, UK
.
28.
Marelli
,
S.
,
Misley
,
A.
,
Silviestri
,
P.
,
Capobianco
,
M.
,
Taylor
,
A.
, and
Canova
,
M.
,
2018
, “
Experimental Investigation on Surge Phenomena in an Automotive Turbocharger Compressor
,” SAE Technique Paper, Paper No. 2018-01-0976.
29.
Galindo
,
J.
,
Serrano
,
J. R.
,
Guardiola
,
C.
, and
Cervelló
,
C.
,
2006
, “
Surge Limit Definition in a Specific Test Bench for the Characterization of Automotive Turbochargers
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
449
462
.
30.
Uchida
,
H.
,
Inayoshi
,
M.
, and
Sugiyama
,
K.
,
1987
, “
Effect of a Circumferential Static Pressure Distortion on Small-Sized Centrifugal Compressor Performance
,”
Proceedings of the International Gas Turbine Congress
,
Tokyo
, Paper No. 87-IGTC-11.
31.
Yang
,
M.
,
Zheng
,
X.
,
Zhang
,
Y.
,
Bamba
,
T.
,
Tamaki
,
H.
,
Huenteler
,
J.
, and
Li
,
Z.
,
2010
, “
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control-Part I: Non-Axisymmetric Flow in Centrifugal Compressor
,” ASME Paper No. GT-2010-22581.
32.
Zhao
,
B.
,
Sun
,
H.
,
Wang
,
L.
, and
Song
,
M.
,
2017
, “
Impact of Inlet Distortion on Turbocharger Compressor Stage Performance
,”
Appl. Therm. Eng.
,
124
, pp.
393
402
.
33.
Yang
,
C.
,
Wang
,
Y.
,
Lao
,
D.
,
Wang
,
W.
,
Yang
,
C.
,
Chen
,
X.
, and
Zhang
,
H.
,
2017
, “
Detailed Measurements of the Static Pressure Characteristics Around the Centrifugal Compressor Casing Wall
,”
J. Therm. Sci. Technol.
,
12
(
1
), pp.
JTST0009
JTST0009
.
34.
Zhang
,
H.
,
Yang
,
C.
,
Wang
,
W.
,
Chen
,
J.
, and
Qi
,
M.
,
2019
, “
Investigation on the Casing Static Pressure Distribution and Stall Behaviors in a Centrifugal Compressor With Volute
,”
Int. J. Mech. Sci.
,
160
, pp.
318
331
.
35.
Uhlenhake
,
G.
,
Selamet
,
A.
,
Fogarty
,
K.
,
Tallio
,
K.
, and
Keller
,
P.
,
2011
, “
Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers
,” SAE Paper No. 2011-01-1644.
You do not currently have access to this content.